Patents Represented by Attorney Rosemary L. S. Pike
  • Patent number: 6458632
    Abstract: Described is a method of creating a MOS gate-controlled SCR (UGSCR) structure with a U-shaped gate (UMOS) for an ESD protection circuit in an IC device which is compatible with shallow trench isolation (STI) and self-aligned silicide (salicide) fabrication technology. The UMOS gate is located in a p-substrate and is surrounded by an n-well on either side. Adjacent to one side of the UMOS gate, a first n+ diffusion is formed which straddles the first n-well. The n+ diffusion together with a p+ pickup diffused next to it form the cathode of the SCR (thyristor). Adjacent to the other side of the UMOS gate, a second n+ and p+ diffusion are formed in a second n-well. The second n+ and p+ diffusion together with the UMOS gate form the anode of the SCR and the input terminal of the circuit to be protected. The SCR is formed by the first n+ diffusion/n-well (cathode), the p-substrate, the second n-well and the second p+/n+ diffusion (anode).
    Type: Grant
    Filed: March 14, 2001
    Date of Patent: October 1, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jun Song, Guang Ping Hua, Keng-Foo Lo
  • Patent number: 6458717
    Abstract: A first option is a method of forming an ultra thin buffer oxide layer comprises the following steps. A silicon substrate having STI regions formed therein separating at least one active area is provided. The silicon substrate has an upper surface. A sacrificial oxide layer is formed over the silicon substrate and the STI regions. Oxygen is implanted within the silicon substrate. The oxygen implant having a peak concentration proximate the upper surface of the silicon substrate. The sacrificial oxide layer is stripped and removed. A gate dielectric layer is formed over the silicon substrate. A conductor layer is deposited over the gate dielectric layer. The structure is annealed to form ultra-thin buffer oxide layer between the silicon substrate and the gate dielectric layer. A second option is a method of forming an ultra-thin buffer oxide layer, comprises the following steps. A silicon substrate having STI regions formed therein separating at least one active area is provided.
    Type: Grant
    Filed: July 13, 2000
    Date of Patent: October 1, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: James Yong Meng Lee, Xia Li, Yunqzang Zhang
  • Patent number: 6458695
    Abstract: Methods for forming dual-metal gate CMOS transistors are described. An NMOS and a PMOS active area of a semiconductor substrate are separated by isolation regions. A metal layer is deposited over a gate dielectric layer in each active area. Oxygen ions are implanted into the metal layer in one active area to form an implanted metal layer which is oxidized to form a metal oxide layer. Thereafter, the metal layer and the metal oxide layer are patterned to form a metal gate in one active area and a metal oxide gate in the other active area wherein the active area having the gate with the higher work function is the PMOS active area. Alternatively, both gates may be metal oxide gates wherein the oxide concentrations of the two gates differ. Alternatively, a dummy gate may be formed in each of the active areas and covered with a dielectric layer. The dielectric layer is planarized thereby exposing the dummy gates. The dummy gates are removed leaving gate openings to the semiconductor substrate.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: October 1, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Wenhe Lin, Mei-Sheng Zhou, Kin Leong Pey, Simon Chooi
  • Patent number: 6455377
    Abstract: A method of fabricating a vertical channel transistor, comprising the following steps. A semiconductor substrate having an upper surface is provided. A high doped N-type lower epitaxial silicon layer is formed on the semiconductor substrate. A low doped P-type middle epitaxial silicon layer is formed on the lower epitaxial silicon layer. A high doped N-type upper epitaxial silicon layer is formed on the middle epitaxial silicon layer. The lower, middle, and upper epitaxial silicon layers are etched to form a epitaxial layer stack defined by isolation trenches. Oxide is formed within the isolation trenches. The oxide is etched to form a gate trench within one of the isolation trenches exposing a sidewall of the epitaxial layer stack facing the gate trench. Multi-quantum wells or a stained-layer super lattice is formed on the exposed epitaxial layer stack sidewall. A gate dielectric layer is formed on the multi-quantum wells or the stained-layer super lattice and within the gate trench.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: September 24, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jia Zhen Zheng, Lap Chan, Elgin Quek, Ravi Sundaresan, Yang Pan, James Yong Meng Lee, Ying Keung Leung, Yelehanka Ramachandramurthy Pradeep
  • Patent number: 6455384
    Abstract: A process for fabricating a MOSFET device, featuring source/drain extension regions, formed after the utilization of high temperature processes, such as heavily doped source/drain regions, has been developed. Disposable insulator spacers are formed on the sides of doped, SEG silicon regions, followed formation of a gate insulator layer, and an overlying gate structure, on a region of the semiconductor substrate located between the doped SEG silicon regions. The temperature experienced during these process steps result in the formation of the heavily doped source/drain, underlying the SEG silicon regions. Selective removal of the disposable spacers, allows the source/drain extension regions to be placed in the space vacated by the disposable spacers, adjacent to the heavily doped source/drain region. Insulator spacers are then used to fill the spaces vacated by removal of the disposable spacers, directly overlying the source/drain extension regions.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: September 24, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Ting Cheong Ang, Shyue Fong Quek, Jun Song, Xing Yu
  • Patent number: 6455403
    Abstract: A method for fabricating a Schottky diode using a shallow trench contact to reduce leakage current in the fabrication of an integrated circuit device is described. The method provides a simple and effective method for decreasing the possibility of forming a bad Schottky diode.
    Type: Grant
    Filed: January 4, 1999
    Date of Patent: September 24, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jei-Fung Hwang, Ruey-Hsing Liou, Chih-Kang Chiu
  • Patent number: 6455781
    Abstract: An improved thermocouple having a ceramic bead insulator is described. A pair of wires in parallel is joined at a first end to a thermocouple and joined at a second end to a connector. The pair of wires is threaded through each of a series of interlocking ceramic beads wherein the series of interlocking ceramic beads forms the ceramic bead insulator.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: September 24, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventor: Lee Kok Tong
  • Patent number: 6451706
    Abstract: A new method of avoiding resist notching in the formation of a polysilicon gate electrode in the fabrication of an integrated circuit device is described. Bare active areas are provided surrounded by field oxide isolation on a semiconductor substrate wherein the surface of the substrate has an uneven topography due to the uneven interface between the active areas and the isolation. A polysilicon layer is deposited over the active areas and the field oxide isolation of the substrate. The surface of the polysilicon layer is roughened using a plasma etching process wherein pits are formed on the surface which act as light traps. The roughened polysilicon layer is covered with a layer of photoresist. Portions of the photoresist layer are exposed to actinic light wherein reflection lights from the actinic light are trapped in the pits. The reflection lights do not reflect onto the unexposed portion of the photoresist layer.
    Type: Grant
    Filed: June 3, 1996
    Date of Patent: September 17, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Ron-Fu Chu, Yang Pan, Qun Ying Lin, Mei Sheng Zhou
  • Patent number: 6451704
    Abstract: A new method is provided for the creation of PLDD regions that is aimed at reducing lateral p-type impurity diffusion. The process starts with a silicon substrate on the surface of which gate electrodes have been created. An NLDD implantation is performed self-aligned with the NMOS gate electrode, a layer of oxide (oxide liner) is deposited over the structure over which a layer of nitride is deposited over which a first layer of top oxide is deposited. First gate spacers are formed by etching the first layer of top oxide, stopping on the nitride layer. NS/D and PS/D implantations are performed self-aligned with respectively the NMOS and the PMOS devices, the S/D implantations are annealed. The first gate oxide spacers are removed, a PLDD implantation is performed self-aligned with the PMOS gate electrode. A second layer of top oxide is deposited over the structure and etched to form the second gate spacers on the sidewalls of the NMOS and PMOS gate electrodes.
    Type: Grant
    Filed: May 7, 2001
    Date of Patent: September 17, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Yelehanka Ramachandramurthy Pradeep, Subrahmanyam Chivukula, Jie Ye, Madhudsudan Mukhopdhyay
  • Patent number: 6448627
    Abstract: An improved antifuse design has been achieved by using a structure comprising a region of heavily doped N type silicon coated with a layer of ONO (oxide-nitride-oxide). Top contact to the ONO is made through a layer of tungsten silicide sandwiched between two layers of N type polysilicon. A cost effective method for manufacturing said antifuse structure is described.
    Type: Grant
    Filed: May 15, 1997
    Date of Patent: September 10, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventor: Calvin Leung Yat Chor
  • Patent number: 6444576
    Abstract: In the present invention a high performance package is described where semiconductor chips are stacked together in a pancake like fashion with inter chip communications facilitated by chip to chip vias formed through the material of each chip. The chip to chip vias are created by etching and filling a hole from the back of a chip through the silicon substrate stopping at the first level of metalization and invoking the wiring of the chip to complete the path to the top side. The chip in the stack are aligned so that chip to chip vias form columns. Signal and power can travel the full length of a column from the bottom chip to the chip on top, or the wiring within the chips can interrupt the signal flow and form interstitial connections. Interstitial connections can also be used to enhance the wireability between chips in the stack. To accommodate cooling the chips in the stack are made in varying sizes and are ordered in size from the largest at the bottom of the stack to the smallest at the top of the stack.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: September 3, 2002
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventor: Sik On Kong
  • Patent number: 6440800
    Abstract: A method for a vertical transistor by selective epi deposition to form the conductive source, drain, and channel layers. The conductive source, drain, and channel layers are preferably formed by a selective epi process. Dielectric masks define the conductive layers and make areas to form vertical contacts to the conductive S/D and channel layers.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: August 27, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: James Yong Meng Lee, Ying Keung Leung, Yelehanka Ramachandramurthy Pradeep, Jia Zhen Zheng, Lap Chan, Elgin Quek, Ravi Sundaresan, Yang Pan
  • Patent number: 6439977
    Abstract: An apparatus for slurry distribution during semiconductor wafer polishing operations. The slurry is gravity fed or fed under pressure and broadcast under an angle across the entire face of the polishing pad by either a rotating slurry nozzle arrangement or by a rotating slurry shaft arrangement. This as opposed to the conventional slurry supply lines, which are stationary in design.
    Type: Grant
    Filed: December 7, 1998
    Date of Patent: August 27, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventor: (Sebastian) Ser Wee Quek
  • Patent number: 6436824
    Abstract: Novel low dielectric constant materials for use as dielectric in the dual damascene process are provided. A low dielectric constant material dielectric layer is formed by reacting a nitrogen-containing precursor and a substituted organosilane in a plasma-enhanced chemical deposition chamber. Also, novel low dielectric constant materials for use as a passivation or etch stop layer in the dual damascene process are provided. A carbon-doped silicon nitride passivation or etch stop layer having a low dielectric constraint is formed by reacting a substituted ammonia precursor and a substituted organosilane in a plasma-enhanced chemical deposition chamber. Alternatively, a silicon-carbide passivation or etch stop layer having a low dielectric constant is formed by reacting a substituted organosilane in a plasma-enhanced chemical deposition chamber. Also, an integrated process of forming passivation, dielectric, and etch stop layers for use in the dual damascene process is described.
    Type: Grant
    Filed: July 2, 1999
    Date of Patent: August 20, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Simon Chooi, Mei Sheng Zhou, Yi Xu
  • Patent number: 6436833
    Abstract: A method of forming shallow trench isolations is described. An etch stop layer is deposited on the surface of a semiconductor substrate. A plurality of isolation trenches are etched through the etch stop layer into the semiconductor substrate to separate active areas. An oxide layer is deposited over the etch stop layer and within the isolation trenches wherein the oxide fills the isolation trenches and overlies the etch stop layer on the active areas. A polysilicon layer is deposited overlying the oxide layer within the isolation trenches and the oxide layer overlying the etch stop layer. The polysilicon layer is polished away until the oxide layer overlying the etch stop layer is exposed and the polysilicon layer remains only overlying the oxide layer in the isolation trenches. The polysilicon layer is oxidized whereby the oxidized polysilicon layer has a height close to the height of the oxide layer overlying the etch stop layer.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: August 20, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chong Hau Pang, Chen Feng, Alex See, Peter Hing
  • Patent number: 6436770
    Abstract: A method for a vertical MOS transistor whose vertical channel width can be accurately defined and controlled. Isolation regions are formed in a substrate. The isolation regions defining an active area. Then, we form a source region in the active area. A dielectric layer is formed over the active area and the isolation regions. We form a barrier layer over the dielectric layer. We form an opening in the barrier layer. A gate layer is formed in the opening. We form an insulating layer over the conductive layer and the barrier layer. We form a gate opening through the insulating layer, the gate layer and the dielectric layer to expose the source region. Gate dielectric spacers are formed over the sidewalls of the gate layer. Then, we form a conductive plug filling the gate opening. The insulating layer is removed. We form a drain region in top and side portions of the conductive plug and form doped gate regions in the gate layer. The remaining portions of the conductive plug comprise a channel region.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: August 20, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Ying Keung Leung, Yelehanka Ramachandramurthy Pradeep, Jia Zhen Zheng, Lap Chan, Elgin Quek, Ravi Sundaresan, Yang Pan, James Yong Meng Lee
  • Patent number: 6436787
    Abstract: A method for fabricating an increased capacitance metal-insulator-metal capacitor using an integrated copper damascene process is described. A contact node is provided overlying a semiconductor substrate. An intermetal dielectric layer is deposited overlying the contact node. A damascene opening is formed through the intermetal dielectric layer to the contact node. A first metal layer is formed on the bottom and sidewalls of the damascene opening and overlying the intermetal dielectric layer. A first barrier metal layer is is deposited overlying the first metal layer. A dielectric layer is dpeosited overlying the first barrier metal layer. A second barrier metal layer is deposited overlying the dielectric layer. A second metal layer is formed overlying the second barrier metal layer and completely filling the damascene opening.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: August 20, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Wong-Cheng Shih, Tzyh-Cheang Lee, Wenchi Ting, Chih-Hsien Lin, Shyh-Chyi Wong
  • Patent number: 6432797
    Abstract: A method for forming shallow trench isolation wherein oxide divots at the edge of the isolation and active regions are reduced or eliminated is described. A trench is etched into a semiconductor substrate. An oxide layer is deposited overlying the semiconductor substrate and filling the trench. Nitrogen atoms are implanted into the oxide layer overlying the trench. The substrate is annealed whereby a layer of nitrogen-rich oxide is formed at the surface of the oxide layer overlying the trench.
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: August 13, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Randall Cher Liang Cha, Tae Jong Lee, Alex See, Lap Chan, Yeow Kheng Lim
  • Patent number: 6429081
    Abstract: A new Flash memory cell device with a parasitic surface transfer transistor (PASTT) and a method of manufacture are achieved. The device comprises, first, a semiconductor substrate. The semiconductor substrate further comprises an active area and an isolation barrier region. A source junction is in the active area. A drain junction is in the active area. A cell channel is in the active area extending from the drain junction to the source junction. A parasitic channel is in the active area on the top surface of the semiconductor substrate extending from the drain junction to the source junction. The parasitic channel is bounded on one side by the isolation barrier region and on another side by the cell channel. A floating gate comprises a first conductive layer overlying the cell channel with a tunneling oxide layer therebetween. The floating gate does not overlie the parasitic channel.
    Type: Grant
    Filed: May 17, 2001
    Date of Patent: August 6, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Kelvin Yin-Yuh Doong, Ching-Hsiang Hsu
  • Patent number: 6429109
    Abstract: A method of forming a gate comprising the following steps. A substrate is provided. A pre-gate structure is formed over the substrate. The pregate structure includes a sacrificial metal layer between an upper gate conductor layer and a lower gate dielectric layer. The pre-gate structure is annealed to form the gate. The gate comprising: an upper silicide layer formed from a portion of the sacrificial metal layer and a portion of the upper gate conductor layer from the anneal; and a lower metal oxide layer formed from a portion of the gate dielectric layer and a portion of the sacrificial metal layer from the anneal.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: August 6, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd
    Inventors: Jia Zhen Zheng, Elgin Quek, Mei Sheng Zhou, Daniel Yen, Chew Hoe Ang, Eng Hua Lim, Randall Cha