Patents Represented by Attorney Saile Ackerman LLC
  • Patent number: 7994596
    Abstract: An MTJ memory cell and/or an array of such cells is provided wherein each such cell has a small circular horizontal cross-section of 1.0 microns or less in diameter and wherein the ferromagnetic free layer of each such cell has a magnetic anisotropy produced by a magnetic coupling with a thin antiferromagnetic layer that is formed on the free layer. The MTJ memory cell so provided is far less sensitive to shape irregularities and edge defects than cells of the prior art.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: August 9, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Tai Min, Cheng Horng, Po Kang Wang
  • Patent number: 7994597
    Abstract: The free layer in a magneto-resistive memory element is stabilized through being pinned by an antiferromagnetic layer. A control valve layer provides exchange coupling between this antiferromagnetic layer and the free layer. When writing data into the free layer, the control valve layer is heated above its curie point thereby temporarily uncoupling the free layer from said antiferromagnetic layer. Once the control valve cools, the free layer magnetization is once again pinned by the antiferromagnetic layer.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: August 9, 2011
    Assignee: MagIC Technologies, Inc.
    Inventor: Tai Min
  • Patent number: 7995425
    Abstract: A slider mounted TAMR (Thermal Assisted Magnetic Recording), DFH (Dynamic Flying Height) type read/write head using optical-laser generated surface plasmons in a small antenna to locally heat a magnetic medium, uses the same optical laser at low power to pre-heat the antenna. Maintaining the antenna at this pre-heated temperature, approximately 50% of its highest temperature during write operations, allows the DFH mechanism sufficient time to compensate for the thermal protrusion of the antenna at that lower temperature, so that thermal protrusion transients are significantly reduced when a writing operation occurs and full laser power is applied. The time constant for antenna protrusion is less than the time constant for DFH fly height compensation, so, without pre-heating, the thermal protrusion of the antenna due to absorption of optical radiation cannot be compensated by the DFH effect.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: August 9, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Erhard Schreck, Kowang Liu, Kouji Shimazawa, Po-Kang Wang
  • Patent number: 7995021
    Abstract: Methods and systems to optimize the adaptation of gamma curve and phase table data to a color LCD STN display anytime by storing these data in a same memory are disclosed. The gamma curve and phase table data are stored in a same read/write memory element; hence allowing the adaptation any time.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: August 9, 2011
    Assignee: Dialog Semiconductor GmbH
    Inventor: Julian Tyrrell
  • Patent number: 7990660
    Abstract: An improved CPP magnetic read device whose oxide barrier comprises at least two separate CCP layers is disclosed. These two CCP layers differ in the PIT and IAO treatments that they received relative to the PIT/IAO treatment that would be used when only a single CCP layer is formed.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: August 2, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Yu-Hsia Chen
  • Patent number: 7991104
    Abstract: A modular Gray code counter of arbitrary bit length having identical Gray code counter cells in every bit position. Each cell comprises a Toggle Flop and logic which triggers the Toggle Flop and sets the state of the Gray code counter cell. The two outputs of a cell feed two inputs of the next more significant cell. A parity flip-flop provides odd parity, and as a third input to the cell together with the other two inputs determines the state of the cell.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: August 2, 2011
    Assignee: Dialog Semiconductor GmbH
    Inventor: Nir Dahan
  • Patent number: 7986572
    Abstract: Magnetic memory elements such as Phase Change RAM and Spin Moment Transfer MRAM require high programming currents. These high programming currents require high gate to source/drain voltages for the cell transistors controlling these programming currents, which can degrade the reliability of these cell transistors. This invention describes a circuit and method to write information into individual memory cells while minimizing the gate voltage stress in the cell transistors of the memory cells in which no information is being written. The circuit of this invention has a separately controllable word line voltage supply for each row of the memory array and a separately controllable voltage supply for each bit line of the memory array. During the write operation the voltage is raised for the word line of only one row of the array. The bit line voltages are then adjusted so that a 1 is written into the desired cells in that row and a 0 is written into the desired cells in that row.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: July 26, 2011
    Assignee: MagIC Technologies, Inc.
    Inventor: Hsu Kai Yang
  • Patent number: 7986498
    Abstract: A high performance TMR element is fabricated by inserting an oxygen surfactant layer (OSL) between a pinned layer and AlOx tunnel barrier layer in a bottom spin valve configuration. The pinned layer preferably has a SyAP configuration with an outer pinned layer, a Ru coupling layer, and an inner pinned layer comprised of CoFeXBY/CoFeZ wherein x=0 to 70 atomic %, y=0 to 30 atomic %, and z=0 to 100 atomic %. The OSL is formed by treating the CoFeZ layer with oxygen plasma. The AlOx tunnel barrier has improved uniformity of about 2% across a 6 inch wafer and can be formed from an Al layer as thin as 5 Angstroms. As a result, the Hin value can be decreased by ? to about 32 Oe. A dR/R of 25% and a RA of 3 ohm-cm2 have been achieved for TMR read head applications.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: July 26, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Hui-Chuan Wang, Tong Zhao, Min Li, Kunliang Zhang
  • Patent number: 7986497
    Abstract: The invention is a magnetoresistive read head with an MTJ configuration having an ultra-thin tunneling barrier layer with low resistance and high breakdown strength. The barrier layer is formed by natural oxidation of an ultra-thin (two atomic layers) Al or Hf—Al layer deposited on an electrode whose surface has first been treated to form an oxygen surfactant layer. The oxygen within the surfactant layer is first adsorbed within the ultra-thin layer and the layer is subsequently naturally oxidized to produce a uniform and stable Al2O3 stoichiometry (or HfO stoichiometry) in the tunneling barrier layer.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: July 26, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong
  • Patent number: 7979978
    Abstract: A process for forming the write pole of a PMR head is described. This write pole is symmetrically located relative to its side shields, This is accomplished, not through optical alignment, but by coating the pole with a uniform layer of non-magnetic material of a predetermined and precise thickness, followed by the formation of the shield layer around this.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: July 19, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Cherng-Chyi Han, Min Li, Fenglin Liu, Chen-Jung Chien
  • Patent number: 7983011
    Abstract: A TMR read head with improved voltage breakdown is formed by laying down the AP1 layer as two or more layers. Each AP1 sub-layer is exposed to a low energy plasma for a short time before the next layer is deposited. This results in a smooth surface, onto which to deposit the tunneling barrier layer, with no disruption of the surface crystal structure of the completed AP1 layer.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: July 19, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Tong Zhao, Chyu-Jiuh Torng, Hui-Chuan Wang
  • Patent number: 7978439
    Abstract: An insertion layer is provided between an AFM layer and an AP2 pinned layer in a GMR or TMR element to improve exchange coupling properties by increasing Hex and the Hex/Hc ratio without degrading the MR ratio. The insertion layer may be a 1 to 15 Angstrom thick amorphous magnetic layer comprised of at least one element of Co, Fe, or Ni, and at least one element having an amorphous character selected from B, Zr, Hf, Nb, Ta, Si, or P, or a 1 to 5 Angstrom thick non-magnetic layer comprised of Cu, Ru, Mn, Hf, or Cr. Preferably, the content of the one or more amorphous elements in the amorphous magnetic layer is less than 40 atomic %. Optionally, the insertion layer may be formed within the AP2 pinned layer. Examples of an insertion layer are CoFeB, CoFeZr, CoFeNb, CoFeHf, CoFeNiZr, CoFeNiHf, and CoFeNiNbZr.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: July 12, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Hui-Chuan Wang, Tong Zhao, Min Li
  • Patent number: 7977111
    Abstract: A magnetic sensor for identifying small superparamagnetic particles bonded to a substrate contains a regular orthogonal array of MTJ cells formed beneath that substrate. A magnetic field imposed on the particle, perpendicular to the substrate, induces a magnetic field that has a component within the MTJ cells that is along the plane of the MTJ free layer. If that free layer has a low switching threshold, the induced field of the particle will create resistance changes in a group of MTJ cells that lie beneath it. These resistance changes will be distributed in a characteristic formation or signature that will indicate the presence of the particle. If the particle's field is insufficient to produce the free layer switching, then a biasing field can be added in the direction of the hard axis and the combination of this field and the induced field allows the presence of the particle to be determined.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: July 12, 2011
    Assignee: MagIC Technologies, Inc.
    Inventors: Xizeng Shi, Pokang Wang, Hsu Kai Yang
  • Patent number: 7978505
    Abstract: A MRAM structure is described that has a dedicated data storage layer formed between first and second electrodes and a dedicated data sensing layer between second and third electrodes to enable separate read and write functions. A diode between the storage layer and first electrode allows a heating current to flow between first and second electrodes to switch the data storage layer while a field is applied. A second diode between the sensing layer and third electrode enables a sensing current to flow only between second and third electrodes during a read process. Data storage and sensing layers and the three electrodes may be arranged in a vertical stack or the sensing layer, second diode, and third electrode may be shifted between adjacent stacks each containing first and second electrodes, a storage layer, and first diode. Second electrode and the sensing layer may be continuous elements through multiple MRAMs.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: July 12, 2011
    Assignee: Headway Technologies, Inc.
    Inventor: Yuchen Zhou
  • Patent number: 7978441
    Abstract: CPP magnetic read head designs have been improved by increasing the length of the AFM layer relative to that of both the free and spacer layers. The length of the pinned layer is also increased, but by a lesser amount, an abutting conductive layer being inserted to fill the remaining space over the AFM layer. The extended pinned layer increases the probability of spin interaction while the added conducting layer serves to divert sensor current away from the bottom magnetic shield which now is no longer needed for use as a lead.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: July 12, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Charles C. Lin, Min Li
  • Patent number: 7977937
    Abstract: A planar array of GMR or TMR sensor elements with planar free and pinned layers is used as the basis of a sensor for detecting the presence of small magnetized particles. In particular, the sensor is used for detecting the presence of magnetized particles bonded to biological molecules that are themselves bonded to a substrate. The magnetized particles on the molecules are detected by the sensors as a result of the interaction between the stray fields of the particles and the magnetic configuration of the sensors. By forming a co-planar layer of soft magnetic material over the sensor or its array, the external field used to magnetize the particles is self-aligned perpendicularly to the sensor plane whereby it does not interfere with the stray fields of the particles.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: July 12, 2011
    Assignee: MagIC Technologies, Inc.
    Inventor: Otto Voegeli
  • Patent number: 7978440
    Abstract: Improved CPP GMR devices have been fabricated by replacing the conventional seed layer (typically Ta) with a bilayer of NiCr on Ta, said seed being deposited on the NiFe layer that constitutes a magnetic shield. Additional improvement was also obtained by replacing the conventional non-magnetic spacer layer of copper with a sandwich structure of two copper layers with an NOL (nano-oxide layer) between them. A process for manufacturing the devices is also described.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: July 12, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Min Li, Cheng T. Horng, Cherng Chyi Han, Yue Liu, Yu-Hsia Chen, Ru-Ying Tong
  • Patent number: 7978436
    Abstract: A method and apparatus for improving flying height stability in a small form factor hard disk drive that typically moves at lower speeds is achieved by a slider having an ABS with an air channel and pocket. The air channel and pocket are configured to increase the amount of aerodynamic lift provided by normally smaller amounts of intake air at the inner diameter of the rotating disk and, thereby, to achieve a desired flying height profile.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: July 12, 2011
    Assignee: SAE Magnetics (HK) Ltd.
    Inventors: Ellis T. Cha, Zhu Feng, Xinjiang Shen, Sindy Yeung
  • Patent number: 7978525
    Abstract: Circuits and methods to minimize power required for sensing and precharge of DRAMs have been achieved. A control circuit ensures that during READ operations the duration of sensing of DRAM cell and precharging is kept to a minimum. A test DRAM cell is used to determine the exact time required for data sensing. Furthermore no precharging is performed during WRITE-operations. In case data is changing from “1” to “0” or vice versa data lines are inverted accordingly during WRITE operation.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: July 12, 2011
    Assignee: Etron Technology, Inc.
    Inventors: Der-Min Yuan, Shih-Hsing Wang
  • Patent number: 7978442
    Abstract: A novel CCP scheme is disclosed for a CPP-GMR sensor in which an amorphous metal/alloy layer such as Hf is inserted between a lower Cu spacer and an oxidizable layer such as Al, Mg, or AlCu prior to performing a pre-ion treatment (PIT) and ion assisted oxidation (IAO) to transform the amorphous layer into a first metal oxide template and the oxidizable layer into a second metal oxide template both having Cu metal paths therein. The amorphous layer promotes smoothness and smaller grain size in the oxidizable layer to minimize variations in the metal paths and thereby improves dR/R, R, and dR uniformity by 50% or more. An amorphous Hf layer may be used without an oxidizable layer, or a thin Cu layer may be inserted in the CCP scheme to form a Hf/PIT/IAO or Hf/Cu/Al/PIT/IAO configuration. A double PIT/IAO process may be used as in Hf/PIT/IAO/Al/PIT/IAO or Hf/PIT/IAO/Hf/PIT/IAO schemes.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: July 12, 2011
    Assignees: TDK Corporation, Kabushiki Kaisha Toshiba
    Inventors: Kunliang Zhang, Min Li, Yue Liu, Hideaki Fukuzawa, Hiromi Yuasa