Patents Represented by Attorney Silicon Edge Law Group LLP
  • Patent number: 7664868
    Abstract: An intelligent network interface card (INIC) or communication processing device (CPD) works with a host computer for data communication. The device provides a fast-path that avoids protocol processing for most messages, greatly accelerating data transfer and offloading time-intensive processing tasks from the host CPU. The host retains a fallback processing capability for messages that do not fit fast-path criteria, with the device providing assistance such as validation even for slow-path messages, and messages being selected for either fast-path or slow-path processing. A context for a connection is defined that allows the device to move data, free of headers, directly to or from a destination or source in the host. The context can be passed back to the host for message processing by the host. The device contains specialized hardware circuits that are much faster at their specific tasks than a general purpose CPU.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: February 16, 2010
    Assignee: Alacritech, Inc.
    Inventors: Laurence B. Boucher, Stephen E. J. Blightman, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr
  • Patent number: 7664883
    Abstract: A network interface device connected to a host provides hardware and processing mechanisms for accelerating data transfers between the host and a network. Some data transfers are processed using a dedicated fast-path whereby the protocol stack of the host performs no network layer or transport layer processing. Other data transfers are, however, handled in a slow-path by the host protocol stack. In one embodiment, the host protocol stack has an ISCSI layer, but a response to a solicited ISCSI read request command is nevertheless processed by the network interface device in fast-path. In another embodiment, an initial portion of a response to a solicited command is handled using the dedicated fast-path and then after an error condition occurs a subsequent portion of the response is handled using the slow-path. The interface device uses a command status message to communicate status to the host.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: February 16, 2010
    Assignee: Alacritech, Inc.
    Inventors: Peter K. Craft, Clive M. Philbrick, Laurence B. Boucher
  • Patent number: 7660137
    Abstract: A high-power modulation system includes drive circuitry that receives input signals from the signal source via a series of transformers. The drive circuitry amplifies the input signals and provides the resulting amplified signals to the high-power switch. The switch includes a series of stacked switching elements, each with a control terminal, first and second current-handling terminals, and feedback path extending between the first current-handling terminal and the control terminal. The feedback paths work in concert to turn the switches on and off together to prevent excessive voltage from developing across one or a subset of the switching elements. The feedback path includes a resistor that dampens the bandwidth of the feedback path to reduce turn-off and turn-on ringing and oscillation. The damping resistor may be coupled in series with a diode that holds charge against the control terminal of the switching element.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: February 9, 2010
    Assignee: Polarity, Inc.
    Inventors: Lawrence W. Goins, Daniel Goluszek
  • Patent number: 7639737
    Abstract: An integrated receiver supports adaptive receive equalization. An incoming bit stream is sampled using edge and data clock signals derived from a reference clock signal. A phase detector determines whether the edge and data clock signals are in phase with the incoming data, while some clock recovery circuitry adjusts the edge and data clock signals as required to match their phases to the incoming data. The receiver employs the edge and data samples used to recover the edge and data clock signals to note the locations of zero crossings for one or more selected data patterns. The pattern or patterns may be selected from among those apt to produce the greatest timing error. Equalization settings may then be adjusted to align the zero crossings of the selected data patterns with the recovered edge clock signal.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: December 29, 2009
    Assignee: Rambus Inc.
    Inventor: Robert E. Palmer
  • Patent number: 7640364
    Abstract: At least one intelligent network interface card (INIC) is coupled to a host computer to offload protocol processing for multiple network connections, reducing the protocol processing of the host. Plural network connections can maintain, via plural INIC ports and a port aggregation switch, an aggregate connection with a network node, increasing bandwidth and reliability for that aggregate connection. Mechanisms are provided for managing this aggregate connection, including determining which port to employ for each individual network connection, and migrating control of an individual network connection from a first INIC to a second INIC.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: December 29, 2009
    Assignee: Alacritech, Inc.
    Inventors: Peter K. Craft, Clive M. Philbrick, Laurence B. Boucher, Daryl D. Starr, Stephen E. J. Blightman, David A. Higgen
  • Patent number: 7639736
    Abstract: An adaptive receiver equalizes incoming data expressed as a series of symbols, the degree of equalization being adjusted by some adaptive control logic. An amplitude detector samples the amplitude of the eye openings of incoming symbols and conveys the resulting measures of eye amplitude to the adaptive control logic. The control logic experiments with different equalization settings while monitoring the resulting eye amplitude to find the equalization setting that provides incoming data eyes of the highest amplitude. A data filter may be included to enable the amplitude detector only in response to particular incoming data patterns.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: December 29, 2009
    Assignee: Rambus Inc.
    Inventor: Ramin Farjad-rad
  • Patent number: 7627684
    Abstract: An intelligent network interface card (INIC) or communication processing device (CPD) works with a host computer for data communication. The device provides a fast-path that avoids protocol processing for most messages, greatly accelerating data transfer and offloading time-intensive processing tasks from the host CPU. The host retains a fallback processing capability for messages that do not fit fast-path criteria, with the device providing assistance such as validation even for slow-path messages, and messages being selected for either fast-path or slow-path processing. A context for a connection is defined that allows the device to move data, free of headers, directly to or from a destination or source in the host. The context can be passed back to the host for message processing by the host. The device contains specialized hardware circuits that are much faster at their specific tasks than a general purpose CPU.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: December 1, 2009
    Assignee: Alacritech, Inc.
    Inventors: Laurence B. Boucher, Stephen E. J. Blightman, Peter K. Craft, David A. Higgen, Clive M. Philbrick, Daryl D. Starr
  • Patent number: 7627066
    Abstract: An apparatus that reduces sampling errors for data communicated between devices uses phase information acquired from a timing reference signal such as a strobe signal to align a data-sampling signal for sampling a data signal that was sent along with the timing reference signal. The data-sampling signal may be provided by adjustably delaying a clock signal according to the phase information acquired from the strobe signal. The data-sampling signal may also have an improved waveform compared to the timing reference signal, including a fifty percent duty cycle and sharp transitions. The phase information acquired from the timing reference signal may also be used for other purposes, such as aligning received data with a local clock domain, or transmitting data so that it arrives at a remote device in synchronism with a reference clock signal at the remote device.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: December 1, 2009
    Assignee: Rambus Inc.
    Inventors: Scott C. Best, Richard E. Warmke, David B. Roberts, Frank Lambrecht
  • Patent number: 7627642
    Abstract: A mail server collects messages from a number of user accounts and presents them to the user from a single location. Forwarded messages are automatically reformatted for the receiving device, while a copy of the original message is retained. Messages may be reformatted to include the phone number of the message sender. The reformatted message can then present the user with an option to return the message via a phone call. The reformatted message can include more than one phone number, in which case the sender's phone numbers can be prioritized for presentation to the user. The reformatted message can also present the user with an option to review notes or other contact-specific information prior to responding to the message.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: December 1, 2009
    Assignee: MXGO
    Inventors: Jens U. Horstmann, Vincent L. Tang, Alan Rothkopf, Tal Dayan, Arie Avnur, Justin M. Kitagawa, Carolyn B. Boyce, Aleksandr M. Schvartsman, Aswath N. Satrasala, Ajay H. Giovindarajan
  • Patent number: 7627001
    Abstract: A host CPU runs a network protocol processing stack that provides instructions not only to process network messages but also to allocate processing of certain network messages to a specialized network communication device, offloading some of the most time consuming protocol processing from the host CPU to the network communication device. By allocating common and time consuming network processes to the device, while retaining the ability to handle less time intensive and more varied processing on the host stack, the network communication device can be relatively simple and cost effective. The host CPU, operating according to instructions from the stack, and the network communication device together determine whether and to what extent a given message is processed by the host CPU or by the network communication device.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: December 1, 2009
    Assignee: Alacritech, Inc.
    Inventors: Peter K. Craft, Clive M. Philbrick, Laurence B. Boucher, David A. Higgen
  • Patent number: 7627029
    Abstract: Described are methods and circuits for margin testing digital receivers. These methods and circuits prevent margins from collapsing in response to erroneously received data, and can thus be used in receivers that employ historical data to reduce intersymbol interference (ISI). Some embodiments detect receive errors for input data streams of unknown patterns, and can thus be used for in-system margin testing. Such systems can be adapted to dynamically alter system parameters during device operation to maintain adequate margins despite fluctuations in the system noise environment due to e.g. temperature and supply-voltage changes. Also described are methods of plotting and interpreting filtered and unfiltered error data generated by the disclosed methods and circuits. Some embodiments filter error data to facilitate pattern-specific margin testing.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: December 1, 2009
    Assignee: Rambus Inc.
    Inventors: Andrew Ho, Vladimir Stojanovic, Bruno W. Garlepp, Fred F. Chen
  • Patent number: 7624742
    Abstract: Described are methods of removing aluminum fluoride contaminants from aluminum, anodized aluminum, and sprayed ceramic surfaces. Hydrofluoric acid, long known to be effective at removing certain contaminants, has not been used to dissolve aluminum fluoride on aluminum-containing surfaces because the hydrofluoric acid strongly attacks such surfaces, and consequently damages sensitive components. Methods used in accordance with some embodiments remove aluminum fluoride using a mixture of hydrofluoric acid and one or more anhydrous acid. Suitable anhydrous acids include acetic acid.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: December 1, 2009
    Assignee: Quantum Global Technologies, LLC.
    Inventor: David S. Zuck
  • Patent number: 7617588
    Abstract: Methods for making devices comprise forming a plurality of transducers on a major surface of a wafer, including forming a plurality of solid layers each having a thickness that is less than one micron; dividing the wafer and the attached transducers into a plurality of units such that each of the units includes a portion of the layers and a substantially planar surface that is substantially perpendicular to the portion of the layers; and removing at least part of the substantially planar surface, including creating, for each transducer, at least one flexible element that is attached the transducer. Conventional problems of connecting a head to the flexure and/or gimbal are eliminated. The heads can be made thinner than is conventional and gimbals and flexures can be more closely aligned with forces arising from interaction with the media surface and from seeking various tracks, reducing torque and dynamic instabilities.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: November 17, 2009
    Inventor: Mark A. Lauer
  • Patent number: 7620726
    Abstract: A host CPU runs a network protocol processing stack that provides instructions not only to process network messages but also to allocate processing of certain network messages to a specialized network communication device, offloading some of the most time consuming protocol processing from the host CPU to the network communication device. By allocating common and time consuming network processes to the device, while retaining the ability to handle less time intensive and more varied processing on the host stack, the network communication device can be relatively simple and cost effective. The host CPU, operating according to instructions from the stack, and the network communication device together determine whether and to what extent a given message is processed by the host CPU or by the network communication device.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: November 17, 2009
    Assignee: Alacritech, Inc.
    Inventors: Peter K. Craft, Clive M. Philbrick, Laurence B. Boucher, David A. Higgen
  • Patent number: 7610417
    Abstract: Described are memory modules that support dynamic point-to-point extensibility using fixed-width memory die. The memory modules include data-width translators that allow the modules to vary the effective width of their external memory interfaces without varying the width of the internal memory interfaces extending between the translators and associated fixed-width dies. The data-width translators use a data-mask signal to selectively prevent memory accesses to subsets of physical addresses. This data masking divides the physical address locations into two or more temporal subsets of the physical address locations, effectively increasing the number of uniquely addressable locations in a given module. Reading temporal addresses in write order can introduce undesirable read latency. Some embodiments reorder read data to reduce this latency.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: October 27, 2009
    Assignee: Rambus Inc.
    Inventor: Ian Shaeffer
  • Patent number: 7610447
    Abstract: Described herein is a point-to-point memory communications architecture, having a point-to-point signal line set associated with each of a plurality of connectors or module positions. When the system is fully populated, there is a one-to-one correspondence between signal line sets and memory modules. In systems that are not fully populated, the system is configurable to use a plurality of the signal line sets for a single memory module.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: October 27, 2009
    Assignee: Rambus Inc.
    Inventors: Richard E. Perego, Frederick A. Ware, Ely K. Tsern, Craig E. Hampel
  • Patent number: 7596175
    Abstract: Described are methods and circuits for margin testing receivers equipped with Decision Feedback Equalization (DFE) or other forms of feedback that employ historical data to reduce intersymbol interference (ISI). In one example, a high-speed serial receiver with DFE injects the correct received data (i.e., the “expected data”) into the feedback path irrespective of whether the receiver produces the correct output data. The margins are therefore maintained in the presence of receiver errors, allowing in-system margin tests to probe the margin boundaries without collapsing the margin limits. Some receivers include local expected-data sources that either store or generate expected data for margin tests. Other embodiments derive the expected data from test data applied to the receiver input terminals.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: September 29, 2009
    Assignee: Rambus Inc.
    Inventor: Fred F. Chen
  • Patent number: 7596634
    Abstract: Offloading application level communication functions from a host processor. The offloading apparatus can be configured as either a pre-processor or as a co-processor. An interface is provided for receiving a network message sent to the host. An engine performs processing of the network message above OSI level 4. In one embodiment, in a fast-path, a response to the message is sent back to the network without any involvement by the host, providing a complete offload. For other messages, certain pre-processing can be performed, such as parsing of a header, message authentication, and look-up of meta-data. The results of the look-up are then passed to the host with the processed header, simplifying the tasks the host needs to perform. The messages and data are transferred to the host using control and data buffers.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: September 29, 2009
    Inventors: Millind Mittal, Murali Repakula
  • Patent number: 7590175
    Abstract: Described are methods and circuits for margin testing digital receivers. These methods and circuits prevent margins from collapsing in response to erroneously received data, and can thus be used in receivers that employ historical data to reduce intersymbol interference (ISI). Some embodiments allows feedback timing to be adjusted independent of the sample timing to measure the effects of some forms of phase misalignment and jitter.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: September 15, 2009
    Assignee: Rambus Inc.
    Inventors: Brian S. Leibowitz, Bruno W. Garlepp
  • Patent number: 7584260
    Abstract: A host CPU runs a network protocol processing stack that provides instructions not only to process network messages but also to allocate processing of certain network messages to a specialized network communication device, offloading some of the most time consuming protocol processing from the host CPU to the network communication device. By allocating common and time consuming network processes to the device, while retaining the ability to handle less time intensive and more varied processing on the host stack, the network communication device can be relatively simple and cost effective. The host CPU, operating according to instructions from the stack, and the network communication device together determine whether and to what extent a given message is processed by the host CPU or by the network communication device.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: September 1, 2009
    Assignee: Alacritech, Inc.
    Inventors: Peter K. Craft, Clive M. Philbrick, Laurence B. Boucher, David A. Higgen