Patents Represented by Attorney Siwen Chen
  • Patent number: 8230699
    Abstract: A method keeps the width of the manufactured sheet substantially the same by attaching edge directors for the formed sheet to the manufacturing apparatus structure instead of to the forming block. Thus, sheet glass may be manufactured to specification for a longer time with the same forming block. An additional method adjusts the width of the manufactured sheet by changing the distance between the edge directors. Thus sheet glass may be manufactured to different width specifications with the same forming block.
    Type: Grant
    Filed: February 15, 2010
    Date of Patent: July 31, 2012
    Assignee: Corning Incorporated
    Inventor: Richard B. Pitbladdo
  • Patent number: 8210001
    Abstract: In a method of making a glass sheet using an overflow fusion downdraw process, a glass sheet quality metric level Q1 is selected, where Q1 is a measure of allowable retardation in the glass sheet. A glass ribbon temperature T1 at which a potential glass ribbon thermal artifact could occur in a glass ribbon while the glass ribbon is being drawn through a drawing machine enclosure is identified. A thermal artifact envelope E1 is determined, where E1 contains types of glass ribbon thermal artifacts allowable at T1 and Q1. A glass melt is overflowed from an isopipe to form a glass ribbon at the root of the isopipe. The glass ribbon is drawn below the root of the isopipe through the drawing machine enclosure to form the glass sheet.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: July 3, 2012
    Assignee: Corning Incorporated
    Inventors: Douglas Clippinger Allan, Kenneth William Aniolek, Kiat Chyai Kang, Eunyoung Park
  • Patent number: 8196431
    Abstract: Methods for controlling thickness variations across the width of a glass ribbon (104) are provided. The methods employ a set of thermal elements (106) for locally controlling the temperature of the ribbon (104). The operating values for the thermal elements (106) are selected using an iterative procedure in which thickness variations measured during a given iteration are employed in a mathematical procedure which selects the operating values for the next iteration. In practice, the method can bring thickness variations of glass sheets within commercial specifications in just a few iterations, e.g., 2-4 iterations.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: June 12, 2012
    Assignee: Corning Incorporated
    Inventors: Steven Roy Burdette, Vladislav Y Golyatin, Gautam Meda, Randy Lee Rhoads
  • Patent number: 8196434
    Abstract: A molten glass delivery system is modified to match it with the overflow downdraw process. A substantial number of defects not removed by the finer are diverted to the unusable inlet and distal edges of the sheet. In one embodiment, the stirring device is relocated from the outlet to the inlet of the finer. In another embodiment, the basic shape of the finer is preferably changed from a cylindrical shape to a Double Apex (or Gull Wing) shaped cross-section, whereby the apexes of the finer contain the glass that will form the unusable inlet end of the glass sheet. The finer vent or vents are preferably located at these apexes such that any homogeneity defects caused by the vents are diverted to the unusable inlet end of the glass sheet. The finer cross-section has a high aspect ratio for increased fining efficiency as compared to a cylindrical finer.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: June 12, 2012
    Assignee: Corning Incorporated
    Inventor: Richard B. Pitbladdo
  • Patent number: 8187715
    Abstract: A rare-earth-containing glass material having a composition, expressed in mole percentages on and oxide basis, comprising: SiO2: 66-75 Al2O3: 11-17 B2O3: 0-4 MgO: 1-6.5 CaO: 2-7 SrO: 0-4 BaO: 0-4 Y2O3: 0-4 La2O3: 0-4 Y2O3+La2O3: 0.1-4. The inclusion of Y2O3 and/or La2O3 in the composition reduces the T2.3 of the glass thereby allowing higher annealing-point glasses to be produced. The glass is particularly useful for low-temperature polycrystalline silicon-based semiconductor devices.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: May 29, 2012
    Assignee: Corning Incorporated
    Inventors: Paul Stephen Danielson, Matthew John Dejneka, Adam James Ellison, Timothy J Kiczenski
  • Patent number: 8171974
    Abstract: A conveyor conveys glass sheets horizontally, while holding them in an upright orientation. Film feed units are provided on both sides of a conveyance path of the glass sheets. Nip rollers press against both surfaces of the glass sheets via films fed from the film feed units so as to sandwich the glass sheets, while the glass sheets are being conveyed by the conveyor.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: May 8, 2012
    Assignee: Corning Incorporated
    Inventor: Takayuki Nagura
  • Patent number: 8156766
    Abstract: The present invention significantly modifies the currently known fining apparatus (finer). The basic shape is changed from a cylindrical shape to an elliptical shape, a somewhat rectangular shape, variations on a gabled roof shape, or variations on a gothic arch shape, such that the flow is more uniform and the seeds have less distance to rise to the surface. Baffles of a novel design are optionally included in an embodiment of the present invention to further increase fining performance. Prior art baffle designs are optionally included in an embodiment of the present invention to trap seeds and serve as structural elements. The present invention improves the fining capability of the apparatus without increasing the cost of construction materials. In fact, the cost would be reduced for the same fining performance by shortening the length of the finer.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: April 17, 2012
    Assignee: Corning Incorporated
    Inventor: Richard B. Pitbladdo
  • Patent number: 8117868
    Abstract: Apparatus and methods for making glass are provided. The apparatus comprise a first glass melt station and a standpipe. The standpipe includes a first end portion in fluid communication with the first glass melt station. The standpipe further includes a gravity trap that is configured to inhibit formed impurities from traveling from at least a portion of the standpipe through the first end portion of the standpipe. The methods comprise the steps of providing the first glass melt station with glass melt, sensing a condition of a quantity of glass melt within the standpipe, and inhibiting formed impurities from traveling from at least a portion of the standpipe through the first end portion of the standpipe.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: February 21, 2012
    Assignee: Corning Incorporated
    Inventors: Martin Herbert Goller, Matthew Carl Morse, G Kris Schwenke
  • Patent number: 8087262
    Abstract: A process and device for abating air-borne particles during glass melt handling processes by using electrostatic precipitation. The invention is effective in abating both precious metal inclusions and non-metallic inclusions in the produced glass.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: January 3, 2012
    Assignee: Corning Incorporated
    Inventors: David Myron Lineman, Matthew Carl Morse, Steven Robert Moshier
  • Patent number: 8067883
    Abstract: A hermetically sealed device comprising a spacing unit and a resistive heating element desirably having a closed-loop structure and process for hermetically sealing a device by using such heating element and spacing unit. The frit can form multiple closed-loops to prevent crack propagation. The heating element can be advantageously made of a metal such as Invar® and/or Kovar®. The invention enables hermetic frit sealing with low residual stress in the seal for large-area displays. The invention is particularly advantageous for hermetic sealing of OLED display devices having a large area, such as those above 10 inches (25 cm).
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: November 29, 2011
    Assignee: Corning Incorporated
    Inventor: Wenchao Wang
  • Patent number: 8067326
    Abstract: Refractory materials are provided which contain P2O5/R2O3 constituents, where R is Y, Sc, Er, Lu, Yb, Tm, Ho, Dy, Tb, Gd, or a combination thereof, and/or V2O5/R?2O3 constituents where R? is Y, Sc, one or more rare earth elements, or a combination thereof. In certain embodiments, the refractory materials are xenotime-type materials and/or xenotime-stabilized zircon-type materials. The refractory materials can be used in the manufacture of glass and glass-ceramics. For example, the refractory materials, especially those that contain P2O5/R2O3 constituents, can be used as forming structures (“isopipes”) in the fusion process for making flat sheets of glass such as the glass sheets used as substrates in the manufacture of flat panel displays.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: November 29, 2011
    Assignee: Corning Incorporated
    Inventors: Hilary Tony Godard, Cameron Wayne Tanner, Michelle M Wallen, Elizabeth Margaret Wheeler
  • Patent number: 8056365
    Abstract: One embodiment of the present invention is an improved sheet glass forming apparatus. In another embodiment, a precise thermal control system redistributes the flow of molten glass at the weirs to counteract the degradation of the sheet forming apparatus which inevitably occurs during manufacturing. In yet another embodiment, the invention introduces a counteracting force to the stresses on the trough in a manner such that the thermal creep which inevitably occurs has a minimum impact on the glass flow characteristics of the forming trough. Another embodiment creates a variable external cross-section which provides hydraulic stresses that are in opposition to the surface tension and body force stresses and thus, reduces the influence of surface tension and body forces. In an alternative embodiment, the glass is preferentially cooled across its width to create forming stresses during solidification, which ensures that the glass sheet drawn is inherently flat.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: November 15, 2011
    Assignee: Corning Incorporated
    Inventor: Richard B. Pitbladdo
  • Patent number: 8058148
    Abstract: Methods and apparatus provide for forming a semiconductor-on-insulator (SOI) structure, including subjecting a implantation surface of a donor semiconductor wafer to an ion implantation step to create a weakened slice in cross-section defining an exfoliation layer of the donor semiconductor wafer; and subjecting the donor semiconductor wafer to a spatial variation step, either before, during or after the ion implantation step, such that at least one parameter of the weakened slice varies spatially across the weakened slice in at least one of X- and Y-axial directions.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: November 15, 2011
    Assignee: Corning Incorporated
    Inventors: Sarko Cherekdjian, Jeffrey Scott Cites, James Gregory Couillard, Richard Orr Maschmeyer, Michael John Moore, Alex Usenko
  • Patent number: 8042361
    Abstract: The present invention significantly modifies “The Overflow Process”. It includes a method and apparatus for measuring glass flow rate and maintaining a constant glass flow rate. It also embodies design features and methods that support and stress the forming apparatus in a manner such that the deformation that results from thermal creep is corrected, thus minimizing the effect of the thermal creep on the thickness variation of the glass sheet. The present invention also embodies design features that change the process from a single step (combined flow distribution and cooling) to a two step process; step one being flow distribution and step two being cooling.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: October 25, 2011
    Assignee: Corning Incorporated
    Inventor: Richard B. Pitbladdo
  • Patent number: 8033137
    Abstract: Methods for reducing stress on an isopipe during manufacture of a drawn glass sheet are disclosed including a method comprising providing an isopipe having a root, heating the isopipe to a predetermined temperature, maintaining the isopipe at the predetermined temperature for a period of time sufficient to relieve at least a portion of a tensile stress on the isopipe root, coupling the isopipe to a down-comer, and then providing glass to the isopipe. Also disclosed is a method comprising heating an isopipe such that the temperature difference between the weir and the root of the isopipe, after heating and prior to coupling, is less than about 100° C. A method comprising application of a compressive force to the ends of an isopipe root during heating is also disclosed.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: October 11, 2011
    Assignee: Corning Incorporated
    Inventors: Steven F Hoysan, Steven Michael Milillo, William Robert Powell
  • Patent number: 8028544
    Abstract: Isopipes (13) for making a glass or a glass-ceramic using a fusion process are provided. The isopipes are made from a silicon nitride refractory material that is: (a) produced in block form in an atmosphere having a pO2 of less than 0.1 using less than 10 weight percent of one or more sintering aids, (b) machined into an isopipe configuration, and (c) exposed to a partial pressure of oxygen equal to or greater than 0.1 for a period of time and at a temperature sufficient to form a SiO2 layer (31) which exhibits substantially only a passive oxidation mechanism. The SiO2 layer (31) serves as a protective barrier for further oxidation of the silicon nitride during use of the isopipe (13). The isopipes (13) exhibit less sag during use than isopipes composed of zircon.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: October 4, 2011
    Assignee: Corning Incorporated
    Inventor: Joseph James McIntosh
  • Patent number: 8024985
    Abstract: Disclosed are systems and methods for evaluating the properties of material used in the manufacture of pulling rolls. In one embodiment, a method is provided for aligning plates comprising the material along an axis and compressing the plates to form a cartridge. The plates can be compressed by a piston. The cartridge can be rotated by a motor. In one embodiment, the cartridge, while rotating, is contacted with a cutting surface to produce a surface finish on the cartridge. Properties such as compressibility, recovery and resiliency, and hardness can be measured.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: September 27, 2011
    Assignee: Corning Incorporated
    Inventor: Dean Veral Neubauer
  • Patent number: 8025975
    Abstract: Pastes for use in producing sintered frit patterns (14) on glass sheets (12), such as the glass sheets used as covers for OLED (18) display devices (10), are provided. The pastes include glass particles, filler particles, and a vehicle. The sizes of the filler and/or glass particles are reduced compared to prior art pastes. Reductions in porosity and surface roughness of sintered frits produced using the pastes, as well as improvements in the available process window for producing OLED packages and the hermeticity and strength of those packages, are reported.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: September 27, 2011
    Assignee: Corning Incorporated
    Inventors: John W Botelho, Edward Arthur Cuellar, Michelle Nicole Haase Pastel, Lu Zhang
  • Patent number: 8006517
    Abstract: The present invention discloses improved methods and apparatus for forming sheet glass. In one embodiment, the invention introduces a counteracting force to the stresses on the forming structure in a manner such that the thermal creep which inevitably occurs has a minimum impact on the glass flow characteristics of the forming structure.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: August 30, 2011
    Assignee: Corning Incorporated
    Inventor: Richard B. Pitbladdo
  • Patent number: 8001805
    Abstract: The present invention discloses improved apparatuses for forming sheet glass. In one embodiment, the invention introduces a structural web that supports the forming structure in a manner such that the thermal creep which inevitably occurs has a minimum impact on the glass flow characteristics of the forming structure.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: August 23, 2011
    Assignee: Corning Incorporated
    Inventor: Richard B. Pitbladdo