Patents Represented by Attorney Thomas R. Berthold
  • Patent number: 8184507
    Abstract: A thermally-assisted recording (TAR) slider has an integrated TAR head and an integrated long laser diode, like an external-cavity VCSEL. The TAR head is integrated with the slider at the trailing end and includes an optical waveguide having a grating coupler oriented in a plane generally parallel to the slider trailing end, and a near-field transducer (NFT) at the slider air-bearing surface (ABS) and coupled to the waveguide. A carrier is attached to the slider front end and supports the external-cavity VCSEL so that the linear path of its output laser beam is directed from the slider front end to the slider trailing end. An optical body is attached to the slider trailing end and has an input surface for receipt of the laser radiation from the laser diode, an output surface for directing the laser radiation to the grating coupler, and at least one reflective surface for turning the laser radiation from the input surface to the output surface.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: May 22, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Toshiki Hirano, Barry Cushing Stipe, Timothy Carl Strand
  • Patent number: 8178158
    Abstract: A method of making a current-perpendicular-to-the-plane giant magnetoresistive (CPP-GMR) sensor with a confined-current-path (CCP) layer uses an array of self-assembled ferritin protein molecules with inorganic cores to make the CCP layer in the sensor stack. In one embodiment, the ferritin molecules with cores of insulating oxide particles are deposited on an electrically conductive support layer and the ferritin molecules are dissolved, leaving an array of insulating oxide particles. An electrically conducting layer is deposited over the oxide particles and into the regions between the oxide particles to form the CCP layer. In another embodiment, the ferritin molecules with inorganic particles in their cores are deposited on an electrically insulating support layer and the ferritin molecules are dissolved, leaving an array of inorganic particles that function as an etch mask.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: May 15, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas R. Berthold, Matthew J. Carey, Jeffrey R. Childress, Jordan Asher Katine, Stefan Maat
  • Patent number: 8179633
    Abstract: A perpendicular magnetic recording system has a write head having a main coil (the write coil) and main pole (the write pole) that directs write flux in a direction perpendicular to the recording layer in the magnetic recording medium, and a transverse auxiliary pole (TAP) that injects auxiliary magnetic flux into the write pole at an angle to the primary or perpendicular axis of the write pole. The additional flux from the TAP, which is injected non-parallel to the primary magnetization of the write pole, exerts a torque on the magnetization of the write pole, thereby facilitating magnetization reversal of the write pole. The TAP is coupled to the main coil but not electrically connected to it. A separate passive coil, not electrically connected to the main coil, may be wrapped as a loop around the main pole and the TAP. Alternatively, the TAP may be located near one of the electrically conductive turns of the main coil.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: May 15, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: John Thomas Contreras, Manfred Ernst Schabes
  • Patent number: 8168311
    Abstract: A magnetic recording disk with pre-patterned surface features of elevated lands and recessed grooves or trenches, like a discrete-track media (DTM) or bit-patterned media (BPM) disk, has a planarized surface. A multilayered disk overcoat is used to protect the recording layer, and at least one of the overcoat layers functions as a stop layer for terminating a chemical-mechanical polishing (CMP) process that substantially planarizes the disk. All of the layers of the multilayered overcoat are located above the lands, but none of the overcoat layers, or a number of layers less than the number of layers over the lands, is located above the recesses.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: May 1, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Charles Mathew Mate, Franck Dreyfus Rose, Kurt Allan Rubin, Steven Gary Schmid, Tushar Keshubhai Suther
  • Patent number: 8164988
    Abstract: A perpendicular magnetic recording system uses bit-patterned media (BPM) and circularly polarized light to switch the magnetization of the discrete magnetic bits by the inverse Faraday effect. Circularly polarized light generates an external rotating electric field in a plane orthogonal to the light propagation direction, which induces a magnetic field parallel to the light propagation direction in a magnetic material exposed to the electric field. The BPM is a generally planar substrate with discrete spaced-apart metal or metal alloy magnetic islands that are magnetizable in a perpendicular direction and are separated by nonmagnetic spaces of non-metallic material on the substrate. A near-field metal transducer is patterned into at least three tips, with the tips surrounding and defining a transducer active region. The circularly polarized light is incident on the tips, which produce a strong in-plane rotating electric field.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: April 24, 2012
    Assignee: Hitachi Globa Storage Technologies Netherlands B.V.
    Inventor: Barry Cushing Stipe
  • Patent number: 8154827
    Abstract: An integrated lead suspension (ILS) or flexure has a connection scheme that allows for coplanar and interleaved conductive traces between read/write circuitry and a read/write head in a magnetic recording disk drive. At each end of the flexure there is an island of electrically conductive substrate material with vias in an insulator layer that permit electrical connection to the islands. Conductive traces on the insulator layer are grouped into two sets and extend generally parallel along the length of the flexure, with the traces from one set being interleaved with traces from the other set and each set carrying one of the positive or negative signals. At each of the ends, all of the traces from a set are connected through the vias to the island at that end.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: April 10, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: John Thomas Contreras, Luiz M Franca-Neto
  • Patent number: 8154829
    Abstract: A tunneling magnetoresistance (TMR) device, like a TMR read head for a magnetic recording hard disk drive, has a magnesium oxide (MgO) tunneling barrier layer and a ferromagnetic underlayer beneath and in direct contact with the MgO tunneling barrier layer. The ferromagnetic underlayer comprises a crystalline material according to the formula (CoxFe(100-x))(100-y)Gey, where the subscripts represent atomic percent, x is between about 45 and 55, and y is between about 26 and 37. The ferromagnetic underlayer may be the CoxFe(100-x))(100-y)Gey portion of a bilayer of two ferromagnetic layers, for example a CoFe/(CoxFe(100-x))(100-y)Gey bilayer. The specific composition of the ferromagnetic underlayer improves the crystallinity of the MgO tunneling barrier after annealing and improves the tunneling magnetoresistance of the TMR device.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: April 10, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Matthew J. Carey, Jeffrey R. Childress, Stefan Maat
  • Patent number: 8139321
    Abstract: A perpendicular magnetic recording write head has an improved antiferromagnetically-coupled laminated main pole (MP) formed on a substrate. The MP has two ferromagnetic multilayers, each comprising at least one FeCo/NiFe/FeCo ferromagnetic trilayer, antiferromagnetically coupled across an antiferromagnetically coupling (AFC) film consisting essentially of ruthenium (Ru). The MP has a NiFe layer directly above the AFC film, on the side of the AFC film opposite the side facing the substrate, and in contact with the Ru AFC film and the lower FeCo layer of the upper multilayer. There is no NiFe layer directly below the Ru AFC film so the side of the AFC film facing the substrate is in direct contact with the upper FeCo layer of the lower multilayer.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: March 20, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Alexander M. Zeltser, Stefan Maat
  • Patent number: 8139319
    Abstract: A perpendicular magnetic recording system has a write head with a main perpendicular write pole connected to a yoke with first and second electrical coils. The first coil is wrapped around the yoke on one side of the main pole, and the second coil is wrapped around the yoke on the other side of the main pole. The first end of each coil is connected to a respective terminal. The second ends of the two coils are connected together and connected to a common terminal. A lead-time circuit is connected between the common terminal and the first end of one of the coils. Immediately after the direction of write current is switched by the write driver, the lead-time circuit causes the current in one of the coils to lead the current in the other coil. The current displacement between the two coils creates a precession of the magnetic flux reversal, thereby reducing the switching time of the write head.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: March 20, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V
    Inventors: John Thomas Contreras, Yimin Hsu, Manfred Ernst Schabes, Xinzhi Xing
  • Patent number: 8139448
    Abstract: A thermally-assisted recording (TAR) slider has an integrated TAR head and an integrated external-cavity VCSEL. The TAR head is integrated with the slider at the trailing end and includes an optical waveguide having a grating coupler oriented in a plane generally parallel to the slider trailing end, and a near-field transducer (NFT) at the slider air-bearing surface (ABS) and coupled to the waveguide. The external cavity is an angled structure and has an input surface for receipt of laser radiation output from the VCSEL, an output surface near the slider trailing end, a partially reflecting third mirror near the output surface, and at least one reflective surface between the input surface and the third mirror for turning the laser radiation and reflecting it between the VCSEL and the third mirror. The laser radiation is output from the external cavity's output surface, through the trailing end of the slider and to the grating coupler.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: March 20, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Toshiki Hirano, Barry Cushing Stipe, Timothy Carl Strand
  • Patent number: 8119017
    Abstract: The invention is a method for making a master mold to be used for nanoimprinting patterned-media magnetic recording disks. The method uses conventional optical or e-beam lithography to form a pattern of generally radial stripes on a substrate, with the stripes being grouped into annular zones or bands. A block copolymer material is deposited on the pattern, resulting in guided self-assembly of the block copolymer into its components to multiply the generally radial stripes into generally radial lines of alternating block copolymer components. The radial lines of one of the components are removed and the radial lines of the remaining component are used as an etch mask to etch the substrate. Conventional lithography is used to form concentric rings over the generally radial lines. After etching and resist removal, the master mold has pillars arranged in circular rings, with the rings grouped into annular bands.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: February 21, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas R. Albrecht, Ricardo Ruiz
  • Patent number: 8119264
    Abstract: A perpendicular magnetic recording disk has a granular cobalt alloy recording layer (RL) containing an additive oxide or oxides, an intermediate layer (IL) as an exchange-break layer on the “soft” magnetic underlayer (SUL), and an ultrathin nucleation film (NF) between the IL and the RL. In the method of making the disk, the IL is deposited at a relatively low sputtering pressure, to thereby reduce the roughness of the RL and overcoat (OC), while the NF and RL are deposited at substantially higher sputtering pressures. The resulting disk has good recording properties and improved corrosion resistance over a comparable disk made with an IL deposited at high sputtering pressure and without the NF. The NF may be a discontinuous film with an average thickness of less than about 1 nm.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: February 21, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Ernesto E. Marinero
  • Patent number: 8116032
    Abstract: A perpendicular magnetic recording system has a write head having a main coil (the write coil) and main pole (the write pole) that directs write flux in a direction perpendicular to the recording layer in the magnetic recording medium, and an auxiliary coil and auxiliary pole that injects magnetic flux into the write pole at an angle to the primary or perpendicular axis of the write pole. The additional flux from the auxiliary pole, which is injected non-parallel to the primary magnetization of the write pole, exerts a relatively large torque on the magnetization of the write pole, thereby facilitating magnetization reversal of the write pole. Electrical circuitry is connected to the main coil and the auxiliary coil to generate the auxiliary flux simultaneous with the switching of the magnetization of the write pole.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: February 14, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: John Thomas Contreras, Manfred Ernst Schabes, David John Seagle
  • Patent number: 8116031
    Abstract: A perpendicular magnetic recording system has a write head having a main helical coil (the write coil) and main pole (the write pole) that directs write flux in a direction perpendicular to the recording layer in the magnetic recording medium, and an auxiliary coil and auxiliary pole that injects magnetic flux into the write pole at an angle to the primary or perpendicular axis of the write pole. The auxiliary coil is preferably a helical coil wrapped around the auxiliary pole. The additional flux from the auxiliary pole, which is injected non-parallel to the primary magnetization of the write pole, exerts a relatively large torque on the magnetization of the write pole, thereby facilitating magnetization reversal of the write pole. Electrical circuitry is connected to the main coil and the auxiliary coil to generate the auxiliary flux simultaneous with the switching of the magnetization of the write pole.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: February 14, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Michael Alex, John Thomas Contreras, Manfred Ernst Schabes, Xinzhi Xing
  • Patent number: 8112580
    Abstract: A magnetic recording hard disk drive (HDD) has at least one read/write head that accesses more than one disk surface. The HDD is able to transfer data to and from the host computer seamlessly without interruption during the time the head is being moved from one disk surface to another disk surface. Nonvolatile solid state memory is associated with pairs of disk surfaces. During the time of a head transfer from one disk surface in the pair to the other disk surface, data is read from or written to the associated nonvolatile memory. The data is first read from or written to one disk surface, then from or to the nonvolatile memory, and then, after completion of the head transfer, from or to the other disk surface, thereby allowing seamless uninterrupted transfer of data.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: February 7, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Zvonimir Z. Bandic, Marco Sanvido
  • Patent number: 8107326
    Abstract: A thermally-assisted recording (TAR) slider has an integrated TAR head and an integrated laser diode. The laser diode may be an external-cavity VCSEL that includes a semiconductor substrate with the VCSEL formed on one surface, an external cavity on the opposite surface, and an output third mirror on the output surface of the external cavity. The TAR head is integrated with the slider at the trailing end and includes an optical waveguide having a grating coupler oriented in a plane generally parallel to the slider trailing end, and a near-field transducer (NFT) at the slider air-bearing surface (ABS) and coupled to the waveguide. A carrier is attached to the slider and has a base portion that supports the external-cavity VCSEL so that the linear path of its output laser beam is aligned with and oriented orthogonal to the plane of the grating coupler. The grating coupler receives the laser radiation and turns it 90 degrees into the waveguide, which directs the laser radiation to the NFT at the ABS.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: January 31, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Toshiki Hirano, Barry Cushing Stipe, Timothy Carl Strand
  • Patent number: 8081542
    Abstract: A thermally-assisted recording (TAR) patterned-media magnetic recording disk drive has a perpendicular patterned-media disk with multilevel data islands and a laser capable of supplying multiple levels of output power to a near-field transducer (NFT). If there are only two cells in each island, each island is formed of an upper cell of magnetic material with a coercivity HC1 and a Curie temperature TC1, a lower cell of magnetic material with a coercivity HC2 and a Curie temperature TC2 greater than TC1, and a nonmagnetic spacer layer between the two cells. Each cell is formed of high-anisotropy material so as to have an anisotropy field greater than the magnetic write field. The TAR laser is capable of supplying at least two levels of output power to the NFT to allow the islands to be heated to two distinct temperatures so that the two cells in an island can be written so as to have either the same or opposite magnetizations.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: December 20, 2011
    Assignee: Hitachi Global Technologies Netherlands B.V.
    Inventors: Michael Konrad Grobis, Barry Cushing Stipe, Dieter K. Weller, Gabriel Zeltzer
  • Patent number: 8081399
    Abstract: Write enhancement circuitry on the head carrier of a magnetic recording disk drive provides additional write current overshoot beyond that provided by the write driver circuitry. An enhancement capacitor is formed with a dielectric layer between two layers of electrically-conductive magnetically-permeable shield material that serve as the capacitor plates. The write enhancement circuitry may also include an enhancement resistor. The enhancement capacitor and resistor are connected between the two terminals on the head carrier that connect to the write head coil. The capacitor and resistor are fabricated on the head carrier at the same time and in the same process as the read head. The first and second capacitor plates are generally coplanar with and formed of the same electrically-conductive magnetically-permeable material that forms the first and second magnetic shields for the read head.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: December 20, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: John Thomas Contreras, David John Seagle
  • Patent number: 8077432
    Abstract: An improved disk stack assembly for a hard disk drive (HDD) includes a generally cylindrical hub with flange having a downward sloping conical flange surface. The conical flange surface is defined between a radially inner circular ridge and a radially outer circular edge. The bottom disk in the stack is in contact with the flange inner circular ridge. The disk stack assembly also includes a disk clamp with a contact surface having a contact rim that is in contact with either the radially inner portion of the top disk in the stack or a spacer ring. The clamp contact rim is located at approximately the same radial distance from the hub's central cylindrical axis as the flange circular ridge so that the clamping force is applied to the disks close to the area where the disk stack is supported on the conical flange surface.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: December 13, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Andrew Hanlon, Fu-Ying Huang, Lidu Huang, Antony Nguyen, Hamid Salehizadeh
  • Patent number: 8059352
    Abstract: Patterned-media magnetic recording disks are made from a master template that has nondata regions that contain a pattern of one or more discrete nondata islands and discrete gaps, with the pattern representing a scrambled number. All disks made from the master template, or from replica molds made from the master, will have the same patterns. When the disks are DC-magnetized so that all the nondata islands are magnetized in the same direction, these patterns will include one or more of discrete magnetized nondata islands and discrete nonmagnetic gaps that are scrambled in a pseudo-random manner. During operation of the disk drive the patterns are detected by the read head and interpreted within the disk drive using knowledge of the pseudo-random scrambling function, so that reading and writing of data can occur in the conventional manner. If the disks are copied in an attempt to replicate the master template, the resulting disks will be inoperable in a disk drive because of the scrambling.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: November 15, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Zvonimir Z. Bandic, Jorge Campello de Souza, Cyril Guyot, Bruce Alexander Wilson