Patents Represented by Attorney Winstead, Sechrest & Minick, P.C.
  • Patent number: 7129860
    Abstract: A parallel decompression system and method that decompresses input compressed data in one or more decompression cycles, with a plurality of tokens typically being decompressed in each cycle in parallel. A parallel decompression engine may include an input for receiving compressed data, a history window, and a plurality of decoders for examining and decoding a plurality of tokens from the compressed data in parallel in a series of decompression cycles. Several devices are described that may include the parallel decompression engine, including intelligent devices, network devices, adapters and other network connection devices, consumer devices, set-top boxes, digital-to-analog and analog-to-digital converters, digital data recording, reading and storage devices, optical data recording, reading and storage devices, solid state storage devices, processors, bus bridges, memory modules, and cache controllers.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: October 31, 2006
    Assignee: Quickshift, Inc.
    Inventors: Manuel J. Alvarez, II, Peter Geiger, Thomas A. Dye
  • Patent number: 7129754
    Abstract: An LSDL circuit replaces the normal clock control of the pre-charge device for the dynamic node with a control signal that is logic zero whenever the circuit is in an active mode and is a logic one when the circuit is in standby mode. The pre-charge device holds the dynamic node at a pre-charged logic one state independent of the clock. During the logic one evaluate time of the clock, the logic tree determines the asserted state of the dynamic node. During the evaluate time, the asserted state is latched by the static LSDL section. The dynamic node then re-charges to the pre-charge state. Since the pre-charge device is not de-gated during the evaluate time, the dynamic node cannot be inadvertently discharged by noise causing an error. Likewise, since the clock does not couple to the pre-charge device a load is removed from the clock tree lowering clock power.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: October 31, 2006
    Assignee: International Business Machines Corporation
    Inventors: Hung C. Ngo, Jayakumaran Sivagnaname, Kevin J. Nowka, Robert K. Montoye
  • Patent number: 7129859
    Abstract: Circuitry used to de-skew data channels coupling parallel data signals over a communication link employs SOI circuitry that is subject to generating pulse distortion due to the history effect modifying threshold voltages. To substantially eliminate the pulse distortion, data signals are XOR with a repeating scramble data pattern that generates scrambled data with a minimum average ratio of logic ones to logic zeros logic zeros to logic ones. The scrambled data is sent over the communication link and de-skewed in the SOI circuitry with little or no pulse distortion. The scramble data pattern is again generated at the receiver side of the communication link after a delay time to synchronize the logic states of the scramble data pattern that generated the scrambled data with the scrambled data at the receiver side. The delayed scrambled data pattern is again XOR'ed with the scrambled data to recover the data signal.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: October 31, 2006
    Assignee: International Business Machines Corporation
    Inventors: Daniel M. Dreps, Robert J. Reese, Hector Saenz
  • Patent number: 7125502
    Abstract: The present invention involves fibers of highly aligned single-wall carbon nanotubes and a process for making the same. The present invention provides a method for effectively dispersing single-wall carbon nanotubes. The process for dispersing the single-wall carbon nanotubes comprises mixing single-wall carbon nanotubes with 100% sulfuric acid or a superacid, heating and stirring under an inert, oxygen-free environment. The single-wall carbon nanotube/acid mixture is wet spun into a coagulant to form the single-wall carbon nanotube fibers. The fibers are recovered, washed and dried. The single-wall carbon nanotubes were highly aligned in the fibers, as determined by Raman spectroscopy analysis.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: October 24, 2006
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Rajesh Kumar Saini, Ramesh Sivarajan, Robert H. Hauge, Virginia Angelica Davis, Matteo Pasquali, Lars Martin Ericson
  • Patent number: 7125308
    Abstract: Activation of printed or dispensed carbon nanotube (CNT) film using a particle-blasting technique, also referred to as sandblasting or bead blasting. The process works by sending particles of material at high enough velocity such that when the particles hit the surface, some of the material at the surface is removed. The surface of the printed CNT film is slowly eroded away by the particles from the particle gun. The CNT fibers may be embedded in several layers of the printed layer, so they may not be removed easily.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: October 24, 2006
    Assignee: Nano-Proprietary, Inc.
    Inventor: Richard Lee Fink
  • Patent number: 7127562
    Abstract: A method and system for ensuring orderly forward progress in granting snoop castout requests. Masters may include a tag (“request tag”) in their transfer requests to a bus macro. The request tag indicates the order of the request issued by the master. If the bus macro determines that the transfer request is snoopable, then the bus macro broadcasts a snoop request that includes the request tag. If a snoop controller determines that the address in the snoop request is a hit to a modified coherency granule in an associated cache, then the master associated with that snoop controller transmits a castout request to the bus macro that includes the request tag associated with the snoop request. The bus macro uses the request tag to determine whether the castout request is a response to the oldest in a series of pipelined snoop requests to be serviced.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: October 24, 2006
    Assignee: International Business Machines Corporation
    Inventors: James Norris Dieffenderfer, Bernard Charles Drerup, Jaya Prakash Ganasan, Richard Gerard Hofmann, Thomas Andrew Sartorius, Thomas Philip Speier, Barry Joe Wolford
  • Patent number: 7125533
    Abstract: A method for functionalizing the wall of single-wall or multi-wall carbon nanotubes involves the use of acyl peroxides to generate carbon-centered free radicals. The method allows for the chemical attachment of a variety of functional groups to the wall or end cap of carbon nanotubes through covalent carbon bonds without destroying the wall or endcap structure of the nanotube. Carbon-centered radicals generated from acyl peroxides can have terminal functional groups that provide sites for further reaction with other compounds. Organic groups with terminal carboxylic acid functionality can be converted to an acyl chloride and further reacted with an amine to form an amide or with a diamine to form an amide with terminal amine. The reactive functional groups attached to the nanotubes provide improved solvent dispersibility and provide reaction sites for monomers for incorporation in polymer structures. The nanotubes can also be functionalized by generating free radicals from organic sulfoxides.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: October 24, 2006
    Assignee: William Marsh Rice University
    Inventors: Valery N. Khabashesku, Haiqing Peng, Mary Lou Margrave, legal representative, Wilbur Edward Billups, Yunming Ying, John L. Margrave, deceased
  • Patent number: 7125534
    Abstract: Single-walled carbon nanotubes have been synthesized by the catalytic decomposition of both carbon monoxide and ethylene over a supported metal catalyst known to produce larger multi-walled nanotubes. Under certain conditions, there is no termination of nanotube growth, and production appears to be limited only by the diffusion of reactant gas through the product nanotube mat that covers the catalyst. The present invention concerns a catalyst-substrate system which promotes the growth of nanotubes that are predominantly single-walled tubes in a specific size range, rather than the large irregular-sized multi-walled carbon fibrils that are known to grow from supported catalysts.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: October 24, 2006
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Jason H. Hafner, Daniel T. Colbert, Kenneth Smith
  • Patent number: 7126081
    Abstract: A system and method for synthesizing nanopowder which provides for precursor material ablation from two opposing electrodes that are spaced apart within a gaseous atmosphere, where a plasma is created by a high power pulsed electrical discharge between the electrodes, such pulse being of short duration to inertially confine the plasma, thereby creating a high temperature and high density plasma having high quench and/or reaction rates with the gaseous atmosphere for improved nanopowder synthesis.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: October 24, 2006
    Assignee: Nanotechnologies, Inc.
    Inventors: Kurt A. Schroder, Doug K. Jackson
  • Patent number: 7121340
    Abstract: An apparatus for reducing the post-detonation pressure of a perforating gun, the apparatus including a perforating gun carrying at least one explosive charge, wherein when the explosive charge is detonated the explosive charge produces a pressurized detonation gas, and a mechanism for reducing the pressure of the detonation gas proximate the perforating gun. The detonation gas pressure is desirably reduced in a time frame sufficient to create a dynamic underbalance condition to facilitate a surge flow of fluid from a reservoir into a wellbore. The pressure reduction mechanism may include singularly or in combination a heat sink to reduce the temperature of the detonation gas, a reactant to recombine with the reactant gas and reduce the molar density of the detonation gas, and a physical compression mechanism to utilize the waste energy of the detonation gas to create work, simultaneously reducing the temperature of the gas and the molar density of the detonation gas.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: October 17, 2006
    Assignee: Schlumberger Technology Corporation
    Inventors: Brenden M. Grove, Lawrence A. Behrmann, Ian C. Walton, Philip Kneisl, Andrew T. Werner
  • Patent number: 7122710
    Abstract: The present invention is directed towards the fluorination of polymeric C60 and towards the chemical and physical modifications of polymeric C60 that can be accomplished through fluorination.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: October 17, 2006
    Assignee: Wiiliam Marsh Rice University
    Inventors: John L. Margrave, Valery N. Khabashesku, Zhenning Gu, Valery Aleksandrovich Davydov, Aleksandra Viktorovna Rakhmanina, Lyudmile Stepanovna Kashevarova
  • Patent number: 7122079
    Abstract: The present invention includes a composition for a silicon-containing material used as an etch mask for underlying layers. More specifically, the silicon-containing material may be used as an etch mask for a patterned imprinted layer comprising protrusions and recessions. To that end, in one embodiment of the present invention, the composition includes a hydroxyl-functional silicone component, a cross-linking component, a catalyst component, and a solvent. This composition allows the silicon-containing material to selectively etch the protrusions and the segments of the patterned imprinting layer in superimposition therewith, while minimizing the etching of the segments in superposition with the recessions, and therefore allowing an in-situ hardened mask to be created by the silicon-containing material, with the hardened mask and the patterned imprinting layer forming a substantially planarized profile.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: October 17, 2006
    Assignee: Molecular Imprints, Inc.
    Inventors: Frank Y. Xu, Michael N. Miller, Michael P. C. Watts
  • Patent number: 7115864
    Abstract: This invention relates generally to a single-wall carbon nanotube (SWNT) purification process and more particularly to a purification process that comprises heating the SWNT-containing felt under oxidizing conditions to remove the amorphous carbon deposits and other contaminating materials. In a preferred mode of this purification procedure, the felt is heated in an aqueous solution of an inorganic oxidant, such as nitric acid, a mixture of hydrogen peroxide and sulfuric acid, or a potassium permanganate. Preferably, SWNT-containing felts are refluxed in an aqueous solution of an oxidizing acid at a concentration high enough to etch away amorphous carbon deposits within a practical time frame, but not so high that the single-wall carbon nanotube material will be etched to a significant degree. When material having a high proportion of SWNT is purified, the preparation produced will be enriched in single-wall nanotubes, so that the SWNT are substantially free of other material.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: October 3, 2006
    Assignee: William Marsh Rice University
    Inventors: Daniel T. Colbert, Hongjie Dai, Jason H. Hafner, Andrew G. Rinzler, Richard E. Smalley, Jie Liu, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Patent number: 7108841
    Abstract: This invention relates generally to forming a patterned array of single-wall carbon nanotubes (SWNT). In one embodiment, a nanoscale array of microwells is provided on a substrate; a metal catalyst is deposited in each microwells; and a stream of hydrocarbon or CO feedstock gas is directed at the substrate under conditions that effect growth of single-wall carbon nanotubes from each microwell.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: September 19, 2006
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Patent number: 7104111
    Abstract: The present invention provides for variable-range hydrogen sensors and methods for making same. Such variable-range hydrogen sensors comprise a series of fabricated Pd—Ag (palladium-silver) nanowires—each wire of the series having a different Ag to Pd ratio—with nanobreakjunctions in them and wherein the nanowires have predefined dimensions and orientation. When the nanowires are exposed to H2, their lattace swells when the H2 concentration reaches a threshold value (unique to that particular ratio of Pd to Ag). This causes the nanobreakjunctions to close leading to a 6–8 orders of magnitude decrease in the resistance along the length of the wire and providing a sensing mechanism for a range of hydrogen concentrations.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: September 12, 2006
    Assignee: Nano-Proprietary, Inc.
    Inventors: Greg Monty, Kwok Ng, Mohshi Yang
  • Patent number: 7106540
    Abstract: A method, computer program product and hard disk drive for restricting a rate of spin-up/spin-down cycles for a spindle motor in a hard disk drive. The firmware in the hard disk drive determines a maximum rate of spin-up/spin-down cycles the spindle motor is designed to handle over a designated period of time based on the number of spin-up/spin-down cycles the spindle motor is designed to handle over its expected lifetime. The firmware disables the automatic standby mode of operation if a calculated rate of spin-up/spin-down cycles during the designated period of time is greater than the maximum rate of spin-up/spin-down cycles the spindle motor is designed to handle over the designated period of time. By disabling the automatic standby mode of operation, the rate of spin-up/spin-down cycles will be reduced as the spindle motor will not incur a spin-up/spin-down cycle until the automatic standby mode of operation is enabled.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: September 12, 2006
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey R. Hobbet, Steve J. Livaccari, Joaquin F. Pacheco
  • Patent number: 7105596
    Abstract: This invention relates generally to a method for producing composites of single-wall carbon nanotubes (SWNTs) and compositions thereof. In one embodiment, the present invention involves a method of producing a composite material that includes a matrix and a carbon nanotube material embedded within said matrix. In another embodiment, a method of producing a composite material containing carbon nanotube material is disclosed. This method includes the steps of preparing an assembly of a fibrous material; adding the carbon nanotube material to the fibrous material; and adding a matrix material precursor to the carbon nanotube material and the fibrous material.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: September 12, 2006
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Patent number: 7107487
    Abstract: A method, system and computer program product for implementing a fault tolerant sleep mode of operation. The system state information may be stored in a volatile memory and in a non-volatile storage unit prior to entering the sleep mode of operation. If a memory corruption event, e.g., power outage, brownout, power surge, occurs during the sleep mode of operation, then, upon receiving an invocation to resume to a normal mode of operation, the system state information stored in the non-volatile storage unit may be reloaded into the volatile memory. By reloading the system state information stored in the non-volatile storage into the volatile memory, the computer system may resume to a normal mode of operation from a sleep mode of operation without any corruption or loss of data.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: September 12, 2006
    Assignee: Lenovo (Singapore) Pte Ltd.
    Inventors: Nazir Haroon Ahmad, Ameha Aklilu, Jordan Hsiao Ping Chin, Richard Alan Dayan, James Patrick Hoff, Eric Richard Kern
  • Patent number: 7101286
    Abstract: Right and left hand golf gloves have attachment features and a location feature such that a golfer may place and maintain his or her hands in a correct position on the shaft of a golf club. The location feature allows the golfer to place the palm of his or her first hand on the golf club shaft in a desired position. First and second attachment features, one on each glove, allow golfers to overlay their gloved second hand over their gloved first hand such that they are placed in a proper, relative position while gripping the golf club. The first and second attachment features further allow an attained proper grip to be maintained throughout a golf swing. Third and fourth attachment features, one on each glove, allow the golfer to additionally couple overlapping fingers of his or her grip and maintain their position during the golf swing.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: September 5, 2006
    Inventor: Timothy R. Oury
  • Patent number: 7097820
    Abstract: This invention relates generally to carbon fiber produced from single-wall carbon nanotube (SWNT) molecular arrays. In one embodiment, the carbon fiber which comprises an aggregation of substantially parallel carbon nanotubes comprises more than one molecular array. Another embodiment of this invention is a large cable-like structure with enhanced tensile properties comprising a number of smaller separate arrays. In another embodiment, a composite structure is disclosed in which a central core array of metallic SWNTs is surrounded by a series of smaller circular non-metallic SWNT arrays.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: August 29, 2006
    Assignee: William Marsh Rice University
    Inventors: Daniel T. Colbert, Hongjie Dai, Jason H. Hafner, Andrew G. Rinzler, Richard E. Smalley