Abstract: An apparatus is provided for holding a compact disk having a central hole. The apparatus includes a body portion and at least three arms. Each arm extends radially inward from a distal end connected to the body portion to an engageable end receivable within the central hole. Each engageable end has at least one extension member connected to the body portion. Each of the arms has a first pivot axis positioned substantially at the distal end, a second pivot axis positioned substantially at the extension member, and a third pivot axis positioned in between the first and second pivot axes.
Abstract: A method and apparatuses for measuring the temperature of a radiating body utilizing the alexandrite effect. The method includes the steps of generating a mathematical relationship between a hue value and temperature for an alexandrite effect filter, receiving radiation from the radiating body, measuring a spectral power distribution of the radiation, calculating the hue value based on the spectral power distribution, and determining the temperature using the mathematical relationship. To implement the method, the apparatuses include an optical probe, a spectral or calorimetric measurement device, and a computer. The apparatuses can measure the temperature of any radiating body with or without spectral lines in the spectral power distribution, and are particularly advantageous to measure high to ultrahigh temperature for radiating bodies with spectral lines, such as plasma, electric arc, and high temperature flames.
Abstract: A liquid crystal display (LCD) viewable under all lighting conditions without excessive power consumption is described. The LCD comprises a first dichroic polarizer, a second dichroic polarizer, an anti-reflection layer positioned in front of the first dichroic polarizer and a liquid crystal cell positioned between the first dichroic polarizer and the second dichroic polarizer. In addition, the LCD comprises a backlight assembly positioned behind the second dichroic polarizer. Finally, the LCD comprises a diffusing transflector positioned between the backlight assembly and the second dichroic polarizer. The diffusing transflector comprises a diffusing element and a transflective element.
Type:
Grant
Filed:
July 16, 2004
Date of Patent:
November 1, 2005
Inventors:
Ran-Hong Raymond Wang, Min-Shine C. Wang
Abstract: A slider that can resist corrosion of moisture, dirt and ultraviolet of sunlight and prevent the pattern therein from wear and tear. The slider also provides a smooth touching feeling to users. The slider mainly containing: a polyethylene foaming board, a first polyethylene foaming skin, a first plastic film, a second polyethylene foaming skin and a second plastic film. The polyethylene foaming board having a top surface, a bottom surface and edge surfaces. The first polyethylene foaming skin contains an inner surface and an outer surface. The inner surface of the first polyethylene foaming skin is bonded with the top surface and the edge surfaces of the polyethylene foaming board. The first polyethylene foaming skin has a foaming rate less than a foaming rate of the polyethylene foaming board. The first plastic film is bonded with the outer surface of the first polyethylene foaming skin. The second polyethylene foaming skin contains an inner surface and an outer surface.
Abstract: A device for locally shielding or blocking a user from close proximity electromagnetic fields emitted by a wireless transmit/receive electronic equipment antenna 22 such as a cellular telephone. The device includes a wearable garments such as a baseball cap 10, electronic carrying pouch 110, fan 210, 250, 410, eyeglass 610, or screens, joined with having EMI/RFI material properties that is specifically worn by the user or placed between the user and the electromagnetic field emanating wireless antenna source 22. It serves to provide as a electromagnetic field shield, either reflective, absorptive, or dissipative behavior in nature, from an direct line-of-sight electromagnetic field radiating from a wireless device antenna 22.
Abstract: A liquid crystal display (LCD) viewable under all lighting conditions without excessive power consumption is described. The LCD comprises a first dichroic polarizer, a second dichroic polarizer, an anti-reflection layer positioned in front of the first dichroic polarizer and a liquid crystal cell positioned between the first dichroic polarizer and the second dichroic polarizer. In addition, the LCD comprises a backlight assembly positioned behind the second dichroic polarizer. Finally, the LCD comprises a diffusing transflector positioned between the backlight assembly and the second dichroic polarizer. The diffusing transflector comprises a diffusing element and a transflective element.
Type:
Grant
Filed:
February 18, 2003
Date of Patent:
June 21, 2005
Inventors:
Ran-Hong Raymond Wang, Min-Shine C. Wang
Abstract: A fabrication method of an electrostatic discharge protection circuit is described, in which a buried layer is formed in the substrate of the electrostatic discharge protection circuit, and a sinker layer electrically connected to the buried layer and a drain is also formed therein. Thereby, when the electrostatic discharge protection circuit is activated, the current flows from a source through the buried layer and the sinker layer to the drain. The current flow path is remote from the gate dielectric layer to avoid damaging the gate dielectric by a large current, so as to improve the dielectric strength of the electrostatic discharge protection circuit.
Abstract: A folding frame comprises four vertical legs and at least one shelf pivotally connected to each of the four vertical legs, each shelf being capable of folding vertically upward. The folding frame further comprises two support beams positioned beneath and on opposite ends of each shelf, each support beam being pivotally connected to two of the four vertical legs and capable of folding horizontally inward. The folding frame is moveable between an extended position with each shelf being horizontal and supported by two of the support beams, and a collapsed position with each shelf being folded vertically upward and the support beams being folded horizontally inward.
Abstract: A method of conducting a laser repair operation. A silicon wafer has a plurality of chips thereon. Each chips has a plurality of bonding pads, a plurality of testing pads, a plurality of fuses and a passivation layer for protecting the chips. The passivation layer exposes the bonding pads and the testing pads. A bump-forming process is conducted to form a bottom metallic layer and a bump sequentially over each bonding pad. Only a bottom metallic layer is formed over each testing pad. The bumps are formed, for example, by electroplating or printing. Testing is carried out by probing various bottom metallic layers above the testing pads. Finally, a laser repair is conducted.
Abstract: A vibration isolation spring mount is disclosed. A compression coil spring is inserted between an inner sleeve and an outer sleeve and a pair of pads are disposed on the inner sleeve and the outer sleeve. Outwardly extending blades disposed on the open end of the inner sleeve are inserted into the spaces defined by inwardly extending teeth disposed on the open end of the outer sleeve, then the blades are rotated relative to the teeth until the teeth and the blades impingingly engage due to the compressed compression coil spring biasing the teeth against the blades.
Abstract: A silicon-on-insulator low-voltage-triggered silicon controlled rectifier device structure that is built upon a substrate and an insulation layer. The insulation layer has a plurality of isolation structures thereon to define a device region. A first-type well and a second-type well are formed over the insulation layer. The first-type and second-type wells are connected. A first gate and a second gate are formed over the first-type well and the second-type well, respectively. The first-type well further includes a first second-type doped region and a first first-type doped region formed between the first second-type doped region and the isolation structure adjacent to the first second-type doped region. The first second-type doped region and the first first-type doped region together form a cathode of the SOI-SCR device. A second first-type doped region is formed within the first-type well between the first second-type doped region and the first gate structure adjacent to the first second-type doped region.
Abstract: A structure of an ESD protection circuit device located under a pad, protecting an internal circuit and a method of manufacturing the same are disclosed. The ESD protection circuit device having a pad window, located under a pad, includes a semiconductor substrate having a P-well and an N-well. The P-well and the N-well have an interface. A predetermined area, pad window is selected in the substrate. A first STI structure, a second STI structure and a third STI structure are formed in the substrate within the pad window. N-type doped regions are formed P-well and in the N-well. First p-type doped regions are formed in the P-well and in the N-well and second p-type doped regions are formed in the P-well and in the N-well. A first zener diode is formed in the N-well and a second zener diode is formed in the P-well.
Abstract: A transformer with an associated heat-dissipating plastic element is provided. The transformer includes a hollow main body, a core, a coil and a heat-dissipating plastic element. The core is installed inside the hollow main body while the coil wraps around the core. The heat-dissipating plastic element is also installed inside the hollow main body. The heat-dissipating plastic element encloses the core and the coil. Alternatively, the heat-dissipating plastic element encloses the hollow main body, the core and the coil so that heat generated by the coil may be directly conducted away to the exterior through the heat-dissipating plastic element.
Abstract: A bonding pad structure. The bonding pad structure includes independently built current conduction structure and mechanical support structure between a bonding pad layer and a substrate. The current conduction structure is constructed using a plurality of serially connected conductive metallic layers each at a different height between the bonding pad layer and the substrate. The conductive metallic layers connect with each other via a plurality of plugs. At least one of the conductive metallic layers connects electrically with a portion of the device in the substrate by a signal conduction line. The mechanical support structure is constructed using a plurality of serially connected supportive metallic layers each at a different height between the bonding pad layer and the substrate. The supportive metallic layers connect with each other via a plurality of plugs.
Abstract: A heat dissipation apparatus, suitable for use to direct the heat generated from an electric appliance that has a circuit board, on which several electronic devices (heat sources) are formed. The heat dissipation apparatus has a main heat sink and several connecting heat sinks. The main heat sink is mounted on each electronic device, while the connecting heat sinks are disposed between the electronic devices and the main heat sink, allowing the heat generated from each electronic device to be conducted to the main heat sink. The heat dissipation apparatus is assembled in various kinds of electric appliances such as power supply or other electric products.
Abstract: A method for manufacturing low cost electroluminescent (EL) illuminated membrane switches is disclosed. The method includes the first step of die cutting, embossing or chemically etching the metal foil surface of a metal foil bonded, light transmitting flexible electrical insulation to simultaneously form one or more front capacitive electrodes, membrane switch contacts and electrical shunt, electrical distribution means and electrical terminations that together comprise a flexible printed circuit panel. This continuous flexible printed circuit substrate is then coupled to a precisely positioned indexing system. Next, the front metal foil capacitive electrodes are coated with a light transmissive electrically conductive layer.
Abstract: A method of removing contaminants from a silicon wafer after chemical-mechanical polishing (CMP). After a copper chemical-mechanical polishing and a subsequent barrier chemical-mechanical polishing operation, an aqueous solution of ozone in de-ionized water is applied to clean the silicon wafer so that contaminants on the wafer are removed. Alternatively, an ozone/de-ionized water buffer-polishing process is conducted after copper and barrier CMP and then the wafer is cleaned using a chemical solution or de-ionized water. Alternatively, an ozone/de-ionized water buffer-polishing process is conducted after both copper-CMP and barrier-CMP and then the wafer is cleaned using a chemical solution or de-ionized water.