Patents Assigned to ABS Global, Inc.
  • Publication number: 20240090479
    Abstract: Provided are genetically edited animals, particularly dairy animals such as cows or heifers, that lactate without having first been pregnant. Also provided are methods and reagents for creating genetically modified animals. Specifically provided are genetically edited dairy animals that have a histidine to arginine substitution in the prolactin receptor gene.
    Type: Application
    Filed: January 27, 2022
    Publication date: March 21, 2024
    Applicant: ABS Global, Inc.
    Inventors: Olivier HIERS, Jeff BETTHAUSER, Brian Timothy BURGER, Jessica HAMMERAND
  • Patent number: 11889830
    Abstract: An integrated system and method for preparing sperm cells to improve their survivability during cryopreservation are described herein. The system features a vessel, a controlled dispenser, and a dispense tube. The dispense tube has a first end fluidly connected to the dispenser and a second end disposed inside the vessel. The second end can be submerged in the sperm cell fluid. The controlled dispenser may be a syringe pump that includes a syringe for containing a cryoprotectant and a pushing mechanism for displacing the syringe. The syringe pump is configured to discharge the cryoprotectant through the dispense tube and into the vessel, thereby dispensing the cryoprotectant into the sperm cell fluid. Mixing of the fluids is achieved using a shaker table agitation.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: February 6, 2024
    Assignee: ABS GLOBAL, INC.
    Inventors: Domenic Busa, Michael Botts, Gary Klas, Johnathan Parker
  • Patent number: 11862748
    Abstract: A cytometer includes an avalanche photodiode, a switching power supply, a filter, and voltage adjustment circuitry. The switching power supply includes a feedback loop. The filter is electrically connected between the switching power supply and the avalanche photodiode. The voltage adjustment circuitry adjusts a voltage on the feedback loop based at least in part on a voltage measured between the filter and the avalanche photodiode.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: January 2, 2024
    Assignee: ABS Global, Inc.
    Inventors: Frederick Savage, Glenn J. Szejna, Zheng Xia
  • Publication number: 20230404069
    Abstract: Technologies for cryopreserving ungulate embryos for implantation into recipient females are described.
    Type: Application
    Filed: July 27, 2023
    Publication date: December 21, 2023
    Applicant: ABS Global, Inc.
    Inventor: Bruno Valente Sanches
  • Patent number: 11793193
    Abstract: Technologies for cryopreserving ungulate embryos for implantation into recipient females are described.
    Type: Grant
    Filed: March 2, 2022
    Date of Patent: October 24, 2023
    Assignee: ABS Global, Inc.
    Inventor: Bruno Valente Sanches
  • Patent number: 11796449
    Abstract: A method of inseminating an animal including flowing a stream of a population of sperm cells through a channel, differentiating the sperm cells into two subpopulations of X-chromosome containing sperm cells and Y-chromosome containing sperm cells, selecting a desired subpopulation, ablating an undesired subpopulation, and collecting both the subpopulations of sperm cells including the desired subpopulation and the ablated undesired subpopulation together, wherein the collected population of sperm cells is used to fertilize an egg.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: October 24, 2023
    Assignee: ABS Global, Inc.
    Inventors: David Appleyard, Jeff Betthauser, Marjorie Faust, John Larsen, Guocheng Shao, Zheng Xia, Yu Zhou
  • Patent number: 11753620
    Abstract: A method and related apparatus for confirming whether a kill laser successfully destroys an undesired population of cells includes introducing fluorescent dye into cells, exciting the cells with a detection laser or a light emitting diode to cause the cell to fluoresce for a first time, measuring the amount of fluorescence in the cells with a detector capable of emitting a detection pulse, classifying the cells via embedded processing as undesired or desired cells based on the amount of fluorescence, firing a kill beam with a kill laser at any undesired cells, measuring the amount of fluorescence in the cells a second time to determine whether a fluorescent event was generated from the kill beam striking the cells, and providing feedback to an operator of the kill laser as to whether any fluorescent events were generated from the kill beam striking the cells.
    Type: Grant
    Filed: July 13, 2022
    Date of Patent: September 12, 2023
    Assignee: ABS Global, Inc.
    Inventors: Frederick Savage, David Appleyard, Zheng Xia, Matthew Ebersole, Daniel McAda
  • Publication number: 20230256446
    Abstract: Microfluidic devices and methods for focusing components in a fluid sample are described herein. The microfluidic devices feature a microfluidic chip having a micro-channel having a constricting portion that narrows in width, and a flow focusing region downstream of the micro-channel. The flow focusing region includes a positively sloping bottom surface that reduces a height of the flow focusing region and sidewalls that taper to reduce a width of the flow focusing region, thereby geometrically constricting the flow focusing region. The devices and methods can be utilized in sex-sorting of sperm cells to improve performance and increase eligibility.
    Type: Application
    Filed: March 31, 2023
    Publication date: August 17, 2023
    Applicant: ABS Global, Inc.
    Inventors: Zheng Xia, Gopakumar Kamalakshakurup
  • Patent number: 11690361
    Abstract: Applicants have identified that three critical phenotypic/genetic measures are highly correlated with transition period health and may be used in selection and breeding protocols and/or in combination with traditional breeding and marker assisted selection methods to improve predictability of transition period health. According to the invention genetic evaluations for mastitis, ketosis, and metritis have been found to be highly predictive of overall transition health. The genetic evaluations are produced by directly measuring thousands of clinical cases of mastitis, ketosis, and metritis in ancestors of a particular animal and using this data in selection. Applicant's selection criteria and quickly impact a breeders population by reducing transition cow disease incidence in the initial population and in progeny.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: July 4, 2023
    Assignee: ABS Global, Inc.
    Inventors: Katrina Dattilo, Yalda Zare, Gabriela Marquez Betz, Kaleena Stephan, Ryan Starkenburg, Cristian Vergara
  • Publication number: 20230197189
    Abstract: Systems and methods for organism genotyping and using genomic data for genotype imputation are disclosed. The system can maintain first genetic sequence information of a sire and second genetic sequence information for a dam, the first and second genetic sequence information indicating one or more single nucleotide polymorphisms (SNPs) of interest. The system can sequence, based on a skim sequencing technique, a sample of genetic information of a progeny of the sire and the dam. The system can identify informative variants based on the first genetic sequence information and the second genetic sequence information. The system can identify informative reads in the sequence of the progeny based on the informative variants. The system can construct a genotype of the progeny based on the informative reads and the one or more SNPs of interest in the first and second genetic sequence information.
    Type: Application
    Filed: December 15, 2022
    Publication date: June 22, 2023
    Applicant: ABS Global, Inc.
    Inventors: Benjamin Brett, Matthew Campbell, Patrice Linel, Steve Rounsley
  • Patent number: 11639888
    Abstract: A method of inseminating an animal including flowing a stream of a population of sperm cells through a channel, differentiating the sperm cells into two subpopulations of X-chromosome containing sperm cells and Y-chromosome containing sperm cells, selecting a desired subpopulation, ablating an undesired subpopulation, and collecting both the subpopulations of sperm cells including the desired subpopulation and the ablated undesired subpopulation together, wherein the collected population of sperm cells is used to fertilize an egg.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: May 2, 2023
    Assignee: ABS GLOBAL, INC.
    Inventors: David Appleyard, Jeff Betthauser, Marjorie Faust, John Larsen, Guocheng Shao, Zheng Xia, Yu Zhou
  • Patent number: 11628439
    Abstract: Microfluidic devices and methods for focusing components in a fluid sample are described herein. The microfluidic devices feature a microfluidic chip having a micro-channel having a constricting portion that narrows in width, and a flow focusing region downstream of the micro-channel. The flow focusing region includes a positively sloping bottom surface that reduces a height of the flow focusing region and sidewalls that taper to reduce a width of the flow focusing region, thereby geometrically constricting the flow focusing region. The devices and methods can be utilized in sex-sorting of sperm cells to improve performance and increase eligibility.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: April 18, 2023
    Assignee: ABS GLOBAL, INC.
    Inventors: Zheng Xia, Gopakumar Kamalakshakurup
  • Patent number: 11600736
    Abstract: A cytometer includes an avalanche photodiode, a switching power supply, a filter, and voltage adjustment circuitry. The switching power supply includes a feedback loop. The filter is electrically connected between the switching power supply and the avalanche photodiode. The voltage adjustment circuitry adjusts a voltage on the feedback loop based at least in part on a voltage measured between the filter and the avalanche photodiode.
    Type: Grant
    Filed: April 25, 2022
    Date of Patent: March 7, 2023
    Assignee: ABS Global, Inc.
    Inventors: Frederick Savage, Glenn J. Szejna, Zheng Xia
  • Patent number: 11513114
    Abstract: A method of choosing which undesired cell to destroy in a multi-cell fluorescent event includes detecting fluorescence of cells, converting photons detected in the fluorescence into an analog voltage output signal, and identifying at least two discernable peaks associated with the cells. By looking solely at properties measured within the multi-cell fluorescent event, a decision of which cell to target for elimination can be made. Using this method with large population sizes can result in an effective sex skewed product. The sex skewed product can, for example, be formed from bull semen which is then later used to inseminate cows which results in an increased likelihood of giving birth to female cattle.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: November 29, 2022
    Assignee: ABS Global, Inc.
    Inventors: Frederick Savage, Matthew Ebersole, Daniel McAda, David Appleyard, Zheng Xia
  • Patent number: 11512691
    Abstract: A microfluidic chip orients and isolates components in a sample fluid mixture by two step focusing, where sheath fluids compress the sample fluid mixture in a sample input channel in one direction, such that the sample fluid mixture becomes a narrower stream bounded by the sheath fluids, and by having the sheath fluids compress the sample fluid mixture in a second direction further downstream, such that the components are compressed and oriented in a selected direction to pass through an interrogation chamber in single file formation for identification and separation by various methods. The isolation mechanism utilizes external, stacked piezoelectric actuator assemblies disposed on a microfluidic chip holder, or piezoelectric actuator assemblies on-chip, so that the actuator assemblies are triggered by an electronic signal to actuate jet chambers on either side of the sample input channel, to jet selected components in the sample input channel into one of the output channels.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: November 29, 2022
    Assignee: ABS GLOBAL, INC.
    Inventors: Zheng Xia, Yu Zhou, John Larsen, Guocheng Shao, Shane Peterson, Marjorie Faust
  • Patent number: 11427804
    Abstract: A method and related apparatus for confirming whether a kill laser successfully destroys an undesired population of cells includes introducing fluorescent dye into cells, exciting the cells with a detection laser or a light emitting diode to cause the cell to fluoresce for a first time, measuring the amount of fluorescence in the cells with a detector capable of emitting a detection pulse, classifying the cells via embedded processing as undesired or desired cells based on the amount of fluorescence, firing a kill beam with a kill laser at any undesired cells, measuring the amount of fluorescence in the cells a second time to determine whether a fluorescent event was generated from the kill beam striking the cells, and providing feedback to an operator of the kill laser as to whether any fluorescent events were generated from the kill beam striking the cells.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: August 30, 2022
    Assignee: ABS Global, Inc.
    Inventors: Frederick Hershel Savage, David Appleyard, Zheng Xia, Matthew Ebersole, Daniel McAda
  • Patent number: 11422504
    Abstract: The invention provides a method, apparatus and system for separating blood and other types of cellular components, and can be combined with holographic optical trapping manipulation or other forms of optical tweezing. One of the exemplary methods includes providing a first flow having a plurality of blood components; providing a second flow; contacting the first flow with the second flow to provide a first separation region; and differentially sedimenting a first blood cellular component of the plurality of blood components into the second flow while concurrently maintaining a second blood cellular component of the plurality of blood components in the first flow. The second flow having the first blood cellular component is then differentially removed from the first flow having the second blood cellular component. Holographic optical traps may also be utilized in conjunction with the various flows to move selected components from one flow to another, as part of or in addition to a separation stage.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: August 23, 2022
    Assignee: ABS GLOBAL, INC.
    Inventors: Daniel Mueth, Joseph Plewa, Jessica Shireman, Amy Anderson, Lewis Gruber, Neil Rosenbaum
  • Patent number: 11419316
    Abstract: Systems for selecting, generating, and breeding hybrid dairy cattle are described, as are methods for maintaining herds of hybrid cattle.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: August 23, 2022
    Assignee: ABS Global, Inc.
    Inventors: Jon Lightner, Richard Williams
  • Patent number: 11415503
    Abstract: A method of inseminating an animal including flowing a stream of a population of sperm cells through a channel, differentiating the sperm cells into two subpopulations of X-chromosome containing sperm cells and Y-chromosome containing sperm cells, selecting a desired subpopulation, ablating an undesired subpopulation, and collecting both the subpopulations of sperm cells including the desired subpopulation and the ablated undesired subpopulation together, wherein the collected population of sperm cells is used to fertilize an egg.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: August 16, 2022
    Assignee: ABS GLOBAL, INC.
    Inventors: David Appleyard, Jeff Betthauser, Marjorie Faust, John Larsen, Guocheng Shao, Zheng Xia, Yu Zhou
  • Patent number: 11415936
    Abstract: The invention provides a method, apparatus and system for separating blood and other types of cellular components, and can be combined with holographic optical trapping manipulation or other forms of optical tweezing. One of the exemplary methods includes providing a first flow having a plurality of blood components; providing a second flow; contacting the first flow with the second flow to provide a first separation region; and differentially sedimenting a first blood cellular component of the plurality of blood components into the second flow while concurrently maintaining a second blood cellular component of the plurality of blood components in the first flow. The second flow having the first blood cellular component is then differentially removed from the first flow having the second blood cellular component. Holographic optical traps may also be utilized in conjunction with the various flows to move selected components from one flow to another, as part of or in addition to a separation stage.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: August 16, 2022
    Assignee: ABS GLOBAL, INC.
    Inventors: Daniel Mueth, Joseph Plewa, Jessica Shireman, Amy Anderson, Lewis Gruber, Neil Rosenbaum