Patents Assigned to Active-Semi, Inc.
  • Patent number: 9514262
    Abstract: A programmable analog tile integrated circuit is configured over a standardized bus by communicating tile configuration information from a first integrated circuit tile, through a second integrated circuit tile, to a third integrated circuit tile. Each of the three integrated circuit tiles is part of an integrated circuit. The standardized bus is formed when the tiles are placed adjacent one another. Data bus and control signal conductors of the adjacent tiles line up and interconnect such that each signal conductor is electrically connected to every tile. Tile configuration information may be written to a selected register identified by an address in any selected one of the tiles using the data bus and control lines, regardless of the relative physical locations of the tile sending and the tile receiving the information. Thus, tile configuration information may pass from one tile to another tile, through any number of intermediate tiles.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: December 6, 2016
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Matthew A. Grant, Gary M. Hurtz, David J. Kunst, Trey A. Roessig
  • Patent number: 9509162
    Abstract: A multi-state battery charger includes a single-stage AC-to-DC switching converter, where the single-stage converter receives an AC supply voltage and directly charges a rechargeable battery without there being any intervening second power stage. A novel battery charger controller integrated circuit in the converter's secondary side detects profile selection resistor values, monitors battery voltage, monitors charging current, monitors battery temperature, controls a protection transistor, and sends a control signal back to a PWM in the primary side. The controller includes a flexible preprogrammed digital state machine circuit that is configured to control the converter from charging state to charging state so that the battery is charged in accordance with a selected one of multiple preprogrammed different multi-state battery charging profiles, where at least one of the profiles has at least one CC (constant current) state and one CV (constant voltage) state.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: November 29, 2016
    Assignee: Active-Semi, Inc.
    Inventors: John H. Carpenter, Jr., Hong Mao, Wan Nian Huang
  • Patent number: 9484906
    Abstract: Apparatus and methods are provided to power an N-type load switch using a bootstrap capacitor. In one embodiment, an integrated circuit for a wireless power receiver comprises a first rectifier input terminal (RX1), a second rectifier input terminal (RX2), a first bootstrap terminal (HSB1), a second bootstrap terminal (HSB2), and a load switch terminal (LSW). A first and a second bootstrap circuit are coupled with HSB1 and HSB2 to power the rectifier in a regular mode. A load switch driver circuit is coupled between LSW and either HSB1 or HSB2. In the regular mode the load switch driver circuit powers a load switch through a corresponding bootstrap circuit. In an output shutdown mode, an output shutdown circuit is turned on to turn off the load switch. In one embodiment, the load switch is external to the integrated circuit. In another embodiment, the load switch is internal to the integrated circuit.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: November 1, 2016
    Assignee: Active-Semi, Inc.
    Inventor: James A. Kohout
  • Patent number: 9479004
    Abstract: A power bank device has a single circuit topology involving a DC-to-DC converter and four transistors so that this single topology can be used both to charge battery cells with a regulated current in a charging step-up boost mode and to drive a regulated voltage onto a power bank voltage output node in a discharging step-down buck mode. In one example, the circuit includes a first transistor coupled to conduct current between a battery voltage node and a switch node SW, a second transistor coupled to conduct current between the SW node and a ground node, and third and fourth transistors coupled in series to conduct current between a voltage input node and the voltage output node. The inductor of the converter is coupled between the SW node and the voltage output node, and the output capacitor of the converter is coupled between the voltage output node and the ground node.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: October 25, 2016
    Assignee: Active-Semi, Inc.
    Inventor: Hong Mao
  • Patent number: 9433047
    Abstract: A single inductor multiple LED string driver comprises a switch control circuit and a current-sensing control circuit. The switch control circuit generates a plurality of digital control signals that are used to control a plurality of switches coupled to a plurality of strings of LEDs. Each switch is selectively turned on and off by each corresponding digital control signal. The current-sensing control circuit determines an integrated charge amount provided by each current that flows from an input voltage through each LED string, through each switch, through a common inductor, and through a main switch to ground. In response to the determined integrated charge amount, the current-sensing control circuit generates an on-time control signal that controls the on-time of each switch such that the average current flowing across each LED string is equal to each other. Furthermore, the total current flowing across each LED string is regulated to a predefined value.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: August 30, 2016
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Cuong Van Pham
  • Patent number: 9391509
    Abstract: A switching regulator having fast start-up time and low standby power is disclosed. In an exemplary embodiment, an apparatus includes a transistor that generates a charging current at a first current level from a base current received at a base terminal. The apparatus also includes a capacitor that charges in response to the charging current at the first current level to generate a voltage signal that increases at a first rate. The apparatus also includes a charge pump having an output coupled to the base terminal. The charge pump outputs a charge pump current when the voltage signal exceeds a first voltage level. The base current is increased by charge pump current to cause the transistor to generate the charging current at a second current level, and the capacitor charges in response to the charging current at the second current level to generate the voltage signal that increases at a second rate.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: July 12, 2016
    Assignee: Active-Semi, Inc.
    Inventors: Wei-Chung Wu, Degang Xia, Rulong Jiang
  • Patent number: 9379555
    Abstract: A system includes an adaptive power source, a wireless power transmitter, and a wireless power receiver. The adaptive power source supplies a supply voltage across a Universal Serial Bus (USB) connector onto the wireless power transmitter that thereby transmits energy to the wireless power receiver. The wireless power transmitter has a USB plug that is inserted into a USB port of the adaptive power source. The wireless power transmitter sends a power control command to the adaptive power source across the USB connector. The power control command determines the supply voltage to be supplied to the wireless power transmitter. If the wireless power receiver determines the power level should be adjusted, then the wireless power receiver sends a wireless control communication to the wireless power transmitter. The wireless power transmitter reads the wireless control communication and sends a power control command to set the supply voltage to a desired level.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: June 28, 2016
    Assignee: Active-Semi, Inc.
    Inventor: Steven Huynh
  • Patent number: 9350245
    Abstract: A packaged device includes a first die, a second die, and specially spaced and positioned sets of package terminals. The first die includes a pulse-width modulator (PWM), a processor, a timer, high-side drivers, low-side drivers, and a fault protection circuit. The second die includes ultra-high voltage high-side drivers. In an ultra-high voltage application, the PWM and external circuitry together form a switching power supply that generates a high voltage. The high voltage powers external high-side transistors. The processor and timer control the ultra-high voltage high-side drivers, that in turn supply drive signals to the external high-side transistors through the package terminals. External low-side transistors are driven directly by low-side drivers of the first die. If the fault protection circuit detects an excessive current, then the fault protection circuit supplies a disable signal to high-side and low-side drivers of both dice.
    Type: Grant
    Filed: March 21, 2015
    Date of Patent: May 24, 2016
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Tsing Hsu
  • Publication number: 20150318707
    Abstract: A system includes an adaptive power source, a wireless power transmitter, and a wireless power receiver. The adaptive power source supplies a supply voltage across a Universal Serial Bus (USB) connector onto the wireless power transmitter that thereby transmits energy to the wireless power receiver. The wireless power transmitter has a USB plug that is inserted into a USB port of the adaptive power source. The wireless power transmitter sends a power control command to the adaptive power source across the USB connector. The power control command determines the supply voltage to be supplied to the wireless power transmitter. If the wireless power receiver determines the power level should be adjusted, then the wireless power receiver sends a wireless control communication to the wireless power transmitter. The wireless power transmitter reads the wireless control communication and sends a power control command to set the supply voltage to a desired level.
    Type: Application
    Filed: April 30, 2014
    Publication date: November 5, 2015
    Applicant: Active-Semi, Inc.
    Inventor: Steven Huynh
  • Patent number: 9178382
    Abstract: A reversible buck or boost converter is operable in a buck mode and in a boost mode. In the buck mode, the converter receives a supply voltage via an input terminal and generates a charging current that is supplied to a battery, thereby charging the battery. The supply voltage is also supplied through the converter to an output terminal. In a boost mode, the converter receives power from the battery and generates a supply current and voltage that is output onto the output terminal. The same single current sense resistor is used both to control the charging current in the buck mode and to control a constant current supplied to the output terminal in the boost mode. The output current is controlled to be constant, regardless of changes in the in the battery voltage and changes in the output voltage.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: November 3, 2015
    Assignee: Active-Semi, Inc.
    Inventors: Hong Mao, Wei-Chung Wu
  • Patent number: 9178413
    Abstract: A power supply system includes an Offline Total Power Management Integrated Circuit (OTPMIC). The OTPMIC controls a Power Factor Correction (PFC) converter, a main AC/DC converter, and a standby AC/DC converter. A PFC Autodetect circuit in the OTPMIC monitors current flow in the PFC converter. If a high power condition is detected, then the PFC Autodetect circuit enables the PFC converter. The high power condition may be a voltage drop across a current sense resistor of a predetermined voltage for a predetermined time, within one half period of the incoming AC supply voltage. If a low power condition is detected, then the PFC Autodetect circuit disables the PFC converter. The PFC Autodetect circuit stores an IMON value that determines the predetermined voltage, and a TMON value that determines the predetermined time. The IMON and TMON values are loaded into the Autodetect circuit across an optocoupler link of the standby converter.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: November 3, 2015
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Hue Khac Trinh, Khanh Quang Dinh, Duong Cong Le, Degang Xia
  • Publication number: 20150310722
    Abstract: A quality of charge (QoC) detector for use in inductive charging systems is disclosed. In an exemplary embodiment, an apparatus includes an inductor that receives a current signal to generate an electromagnetic field during a power transfer to an external device, and a quality detector to determine a quality metric associated with the power transfer. The apparatus also includes an indicator that indicates multiple states, where one of the multiple states is selected to indicate the quality metric.
    Type: Application
    Filed: April 28, 2014
    Publication date: October 29, 2015
    Applicant: Active-Semi, Inc.
    Inventors: Marc Sousa, Mark Cieri
  • Patent number: 9141748
    Abstract: An integrated circuit (IC) and fabrication method thereof is provided that include the steps of specifying a plurality of required tile modules suitable for a particular end application, each of the modular tiles being configured to perform a predetermined function and constructed to have approximately the same length and width dimensions. The modular tiles are used to form the IC in a standard IC fabrication process. In many implementations, physical layout of the IC does not include the step of routing. Capabilities also include configuring the modular tiles to have programmable performance parameters and configuring the modular tiles to cooperate usefully with one another based on a programmable parameter.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: September 22, 2015
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, David Kunst
  • Patent number: 9106071
    Abstract: Apparatus and methods are provided for bootstrap and over voltage protection (OVP) combination clamping. In one embodiment, method is provided to use the same bootstrap capacitors and bootstrap terminals for an over voltage protection circuit. In one embodiment, an integrated circuit for a wireless power receiver comprises a first rectifier input terminal RX1, a second rectifier input terminal RX2, a first bootstrap terminal HSB1, a second bootstrap terminal HSB2. A first and a second bootstrap circuit are coupled to HSB1 and HSB2 to power the rectifier circuit in a regular mode. A over voltage protection (OVP) circuit is coupled between HSB1 and HSB2. The OVP circuit is turned on to connect HSB1 and HSB2 together in an OVP mode.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: August 11, 2015
    Assignee: Active-Semi, Inc.
    Inventor: James A. Kohout
  • Publication number: 20150137610
    Abstract: Apparatus and methods are provided to automatically detect and control a load switch for a wireless power receiver. In one novel aspect, a method is provided to adaptively control the load switch based on the output condition of a rectified output according to a predefined criteria. In one embodiment of the invention, the methods to adaptively control the load switch comprises a first stage that turns on the load switch quickly; a second stage that stops turning on the load switch and holds the load switch at its current value; a third stage that slowly pulls down the load switch; and a fourth stage that quickly turns off the load switch. In another embodiment, an integrated circuit for a wireless power pick up unit is provided to control the load switch adaptively based on a rectified output feedback and a predefined criteria.
    Type: Application
    Filed: November 21, 2013
    Publication date: May 21, 2015
    Applicant: ACTIVE-SEMI, INC.
    Inventor: James A. Kohout
  • Publication number: 20150138856
    Abstract: A power supply system includes an Offline Total Power Management Integrated Circuit (OTPMIC). The OTPMIC controls a Power Factor Correction (PFC) converter, a main AC/DC converter, and a standby AC/DC converter. A PFC Autodetect circuit in the OTPMIC monitors current flow in the PFC converter. If a high power condition is detected, then the PFC Autodetect circuit enables the PFC converter. The high power condition may be a voltage drop across a current sense resistor of a predetermined voltage for a predetermined time, within one half period of the incoming AC supply voltage. If a low power condition is detected, then the PFC Autodetect circuit disables the PFC converter. The PFC Autodetect circuit stores an IMON value that determines the predetermined voltage, and a TMON value that determines the predetermined time. The IMON and TMON values are loaded into the Autodetect circuit across an optocoupler link of the standby converter.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 21, 2015
    Applicant: Active-Semi, Inc.
    Inventors: Steven Huynh, Hue Khac Trinh, Khanh Quang Dinh, Duong Cong Le, Degang Xia
  • Publication number: 20150097439
    Abstract: Apparatus and methods are provided to power an N-type load switch using a bootstrap capacitor. In one embodiment, an integrated circuit for a wireless power receiver comprises a first rectifier input terminal RX1, a second rectifier input terminal RX2, a first bootstrap terminal HSB1, a second bootstrap terminal HSB2. A first and a second bootstrap circuit are coupled with HSB1 and HSB2 to power the rectifier circuit in a regular mode. A LSW driver circuit is coupled between the LSW terminal and either HSB1 or HSB2. In the regular mode the LSW driver circuit powers a load switch through a corresponding bootstrap circuit. In an output shutdown mode, an output shutdown circuit is turned on to turn off the load switch. In one embodiment, the load switch is external to the integrated circuit. In another embodiment, the load switch is internal to the integrated circuit.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 9, 2015
    Applicant: Active-Semi, Inc.
    Inventor: James A. Kohout
  • Publication number: 20150098162
    Abstract: Apparatus and methods are provided for bootstrap and over voltage protection (OVP) combination clamping. In one embodiment, method is provided to use the same bootstrap capacitors and bootstrap terminals for an over voltage protection circuit. In one embodiment, an integrated circuit for a wireless power receiver comprises a first rectifier input terminal RX1, a second rectifier input terminal RX2, a first bootstrap terminal HSB1, a second bootstrap terminal HSB2. A first and a second bootstrap circuit are coupled to HSB1 and HSB2 to power the rectifier circuit in a regular mode. A over voltage protection (OVP) circuit is coupled between HSB1 and HSB2. The OVP circuit is turned on to connect HSB1 and HSB2 together in an OVP mode.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 9, 2015
    Applicant: Active-Semi, Inc.
    Inventor: James A. Kohout
  • Patent number: 9000678
    Abstract: An LED lamp with an integrated circuit, a rectifier, and a string of series-connected LEDs rectifies an incoming AC signal. The integrated circuit includes power switches that can separately and selectably short out a corresponding one of several groups of LEDs in an LED string across which the rectified AC signal is present. As the voltage across the string increases, the integrated circuit controls the power switches to increase the number of LEDs through which current flows, whereas as the voltage across the string decreases the integrated circuit controls the power switches to decrease the number of LEDs through which current flows. The flow of LED string current is broken to reduce flicker. Alternatively, a valley fill capacitor peaks LED current during the valleys of the incoming AC signal to reduce flicker. LED current is regulated to provide superior efficiency, reliability, power-factor correction, and lamp over-voltage, -current, and -temperature protection.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: April 7, 2015
    Assignee: Active-Semi, Inc.
    Inventor: Steven Huynh
  • Patent number: 9003340
    Abstract: A programmable analog tile integrated circuit is configured over a standardized bus by communicating tile configuration information from a first integrated circuit tile, through a second integrated circuit tile, to a third integrated circuit tile. Each of the three integrated circuit tiles is part of an integrated circuit. The standardized bus is formed when the tiles are placed adjacent one another. Data bus and control signal conductors of the adjacent tiles line up and interconnect such that each signal conductor is electrically connected to every tile. Tile configuration information may be written to a selected register identified by an address in any selected one of the tiles using the data bus and control lines, regardless of the relative physical locations of the tile sending and the tile receiving the information. Thus, tile configuration information may pass from one tile to another tile, through any number of intermediate tiles.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: April 7, 2015
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Matthew A. Grant, Gary M. Hurtz, David J. Kunst, Trey A. Roessig