Abstract: The a trench semiconductor device such as a power MOSFET the high electric field at the corner of the trench is diminished by increasing the thickness of the gate oxide layer at the bottom of the trench. Several processes for manufacturing such devices are described. In one group of processes a directional deposition of silicon oxide is performed after the trench has been etched, yielding a thick oxide layer at the bottom of the trench. Any oxide which deposits on the walls of the trench is removed before a thin gate oxide layer is grown on the walls. The trench is then filled with polysilicon in or more stages. In a variation of the process a small amount of photoresist is deposited on the oxide at the bottom of the trench before the walls of the trench are etched. Alternatively, polysilicon can be deposited in the trench and etched back until only a portion remains at the bottom of the trench. The polysilicon is then oxidized and the trench is refilled with polysilicon.
Type:
Grant
Filed:
May 25, 2005
Date of Patent:
October 2, 2007
Assignee:
Advanced Analogic Technologies, Inc.
Inventors:
Richard K. Williams, Wayne B. Grabowski
Abstract: A family of semiconductor devices is formed in a substrate that contains no epitaxial layer. In one embodiment the family includes a 5V CMOS pair, a 12V CMOS pair, a 5V NPN, a 5V PNP, several forms of a lateral trench MOSFET, and a 30V lateral N-channel DMOS. Each of the devices is extremely compact, both laterally and vertically, and can be fully isolated from all other devices in the substrate.
Abstract: The present invention discloses a DC-to-DC step-up converter to which a logic control unit is added in order to reduce the ripples of a DC output voltage and improve the power quality. The converter of the present invention comprises a step-up circuit, a ring oscillator, a divider circuit, a PFM (pulse frequency modulation) comparator and a logic control unit. The step-up circuit is used to step up a source voltage to generate a DC output voltage. The ring oscillator is used to generate an oscillator output signal. The divider circuit receives the DC output voltage to generate a feedback voltage. The PFM comparator compares the feedback voltage with a reference voltage to generate a comparator output signal to control outputting of the oscillator output signal.
Type:
Grant
Filed:
July 15, 2005
Date of Patent:
July 17, 2007
Assignee:
Advanced Analog Technology, Inc.
Inventors:
Chu Yu Chu, You Min Sun, Mao Cyuan Jian, Shih Jie Liao
Abstract: The a trench semiconductor device such as a power MOSFET the high electric field at the corner of the trench is diminished by increasing the thickness of the gate oxide layer at the bottom of the trench. Several processes for manufacturing such devices are described. In one group of processes a directional deposition of silicon oxide is performed after the trench has been etched, yielding a thick oxide layer at the bottom of the trench. Any oxide which deposits on the walls of the trench is removed before a thin gate oxide layer is grown on the walls. The trench is then filled with polysilicon in or more stages. In a variation of the process a small amount of photoresist is deposited on the oxide at the bottom of the trench before the walls of the trench are etched. Alternatively, polysilicon can be deposited in the trench and etched back until only a portion remains at the bottom of the trench. The polysilicon is then oxidized and the trench is refilled with polysilicon.
Type:
Grant
Filed:
May 25, 2005
Date of Patent:
July 3, 2007
Assignee:
Advanced Analogic Technologies, Inc.
Inventors:
Richard K. Williams, Wayne B. Grabowski
Abstract: Isolation regions for semiconductor substrates include dielectric-filled trenches and field oxide regions. Protective caps of dielectric materials dissimilar from the dielectric materials in the main portions of the trenches and field oxide regions may be used to protect the structures from erosion during later process steps. The top surfaces of the isolation structures are coplanar with the surface of the substrate. Field doping regions may be formed beneath the field oxide regions. To meet the demands of different devices, the isolation structures may have varying widths and depths.
Abstract: A multi-channel current regulator includes two or more channels, each channel acting as a current source or sink for a respective load. Each channel regulates its load current so that the load current is proportional to an input voltage supplied to the channel. An operational amplifier is shared between the channels. Each channel is selected in a rotating sequence for connection to the amplifier. As each channel is selected, a two-phase refresh cycle is initiated. During the first phase, the output of the amplifier is charged until it substantially matches the drive voltage of the selected channel. This is followed by the second phase where the output of the amplifier is adjusted until the load current of the selected channel is proportional to a set voltage Vset.
Abstract: A family of semiconductor devices is formed in a substrate that contains no epitaxial layer. In one embodiment the family includes a 5V CMOS pair, a 12V CMOS pair, a 5V NPN, a 5V PNP, several forms of a lateral trench MOSFET, and a 30V lateral N-channel DMOS. Each of the devices is extremely compact, both laterally and vertically, and can be fully isolated from all other devices in the substrate.
Abstract: A family of semiconductor devices is formed in a substrate that contains no epitaxial layer. In one embodiment the family includes a 5V CMOS pair, a 12V CMOS pair, a 5V NPN, a 5V PNP, several forms of a lateral trench MOSFET, and a 30V lateral N-channel DMOS. Each of the devices is extremely compact, both laterally and vertically, and can be fully isolated from all other devices in the substrate.
Abstract: A semiconductor substrate includes a pair of trenches filled with a dielectric material. Dopant introduced into the mesa between the trenches is limited from diffusing laterally when the substrate is subjected to thermal processing. Therefore, semiconductor devices can be spaced more closely together on the substrate, and the packing density of the devices can be increased. Also trench constrained doped region diffuse faster and deeper than unconstrained diffusions, thereby reducing the time and temperature needed to complete a desired depth diffusion. The technique may be used for semiconductor devices such as bipolar transistors as well as isolation regions that electrically isolate the devices from each other. In one group of embodiments, a buried layer is formed at an interface between an epitaxial layer and a substrate, at a location generally below the dopant in the mesa.
Type:
Grant
Filed:
August 15, 2005
Date of Patent:
February 13, 2007
Assignee:
Advanced Analogic Technologies, Inc
Inventors:
Richard K. Williams, Michael E. Cornell, Wai Tien Chan
Abstract: A switching regulator includes a feedback network that generates a voltage Vea that is proportional to the difference between the output of the switching regulator and a reference voltage. A comparator is used to compare Vea to a sawtooth voltage to generate a voltage Vpwm. The voltage Vpwm drives a high-side switching transistor that controls the output of the regulator. A first clamping transistor that provides a variable gain connection between the voltage Vea and ground. As Vea rises above a predefined level, the clamping circuit increases the connection between Vea and ground, preventing Vea from substantially exceeding Vt. As a result, transient performance of the regulator is improved.
Abstract: An instruction encoding method is provided for communication between devices. Before transmission, each opcode is multiplied by two. Each operand is multiplied by two and incremented by one. Encoded opcodes and operands are sent as rising edges (i.e., voltage transitions) on a single wire connecting transmitting and receiving devices. The receiving device counts the rising edges to form a total. Even totals correspond to opcodes, odd totals correspond to operands.
Abstract: A family of semiconductor devices is formed in a substrate that contains no epitaxial layer. In one embodiment the family includes a 5V CMOS pair, a 12V CMOS pair, a 5V NPN, a 5V PNP, several forms of a lateral trench MOSFET, and a 30V lateral N-channel DMOS. Each of the devices is extremely compact, both laterally and vertically, and can be fully isolated from all other devices in the substrate.
Abstract: A single wire serial interface for power ICs and other devices is provided. To use the interface, a device is configured to include an EN/SET input pin. A counter within the device counts clock pulses sent to the EN/SET input pin. The output of the counter is passed to a ROM or other decoder circuit. The ROM selects an operational state for the device that corresponds to the value of the counter. In this way, control states may be selected for the device by sending corresponding clock pulses to the EN/SET pin. Holding the EN/SET pin high causes the device to maintain its operational state. Holding the EN/SET pin low for a predetermined timeout period resets the counter and causes the device to adopt a predetermined configuration (such as off) until new clock pulses are received at the EN/SET pin.
Type:
Grant
Filed:
May 13, 2002
Date of Patent:
October 24, 2006
Assignee:
Advanced Analogic Technologies, Inc.
Inventors:
Kevin P. D'Angelo, David Alan Brown, John Sung K. So, Jan Nilsson, Richard K Williams
Abstract: An structure for electrically isolating a semiconductor device is formed by implanting dopant into a semiconductor substrate that does not include an epitaxial layer. Following the implant the structure is exposed to a very limited thermal budget so that dopant does not diffuse significantly. As a result, the dimensions of the isolation structure are limited and defined, thereby allowing a higher packing density than obtainable using conventional processes which include the growth of an epitaxial layer and diffusion of the dopants. In one group of embodiments, the isolation structure includes a deep layer and a sidewall and which together form a cup-shaped structure surrounding an enclosed region in which the isolated semiconductor device may be formed. The sidewalls may be formed by a series of pulsed implants at different energies, thereby creating a stack of overlapping implanted regions.
Abstract: In a trench-gated MOSFET including an epitaxial layer over a substrate of like conductivity and trenches containing thick bottom oxide, sidewall gate oxide, and conductive gates, body regions of the complementary conductivity are shallower than the gates, and clamp regions are deeper and more heavily doped than the body regions but shallower than the trenches. Zener junctions clamp a drain-source voltage lower than the FPI breakdown of body junctions near the trenches, but the zener junctions, being shallower than the trenches, avoid undue degradation of the maximum drain-source voltage. The epitaxial layer may have a dopant concentration that increases step-wise or continuously with depth. Chained implants of the body and clamp regions permits accurate control of dopant concentrations and of junction depth and position. Alternative fabrication processes permit implantation of the body and clamp regions before gate bus formation or through the gate bus after gate bus formation.
Abstract: A family of semiconductor devices is formed in a substrate that contains no epitaxial layer. In one embodiment the family includes a 5V CMOS pair, a 12V CMOS pair, a 5V NPN, a 5V PNP, several forms of a lateral trench MOSFET, and a 30V lateral N-channel DMOS. Each of the devices is extremely compact, both laterally and vertically, and can be fully isolated from all other devices in the substrate.
Abstract: A device control protocol (and related implementation) is provided to control power ICs and other devices. For this protocol, a master device communicates with a slave device using a single wire. The device control protocol distinguishes between different types of information (such as register address information and register content information) by defining one or more boundary values. For one example, register content information is defined to be less than or equal to n. Register address information is defined to be more than n. To store data into a register of a slave device, a master device sends the register address using more than n rising edges of the EN/SET signal. The master device then sends the register contents using n or less rising edges of the EN/SET signal. The slave device decodes the address information, selects the corresponding register and stores the register contents.
Abstract: A semiconductor wafer includes a wafer body, a plurality of analog IC dies spacedly and alignedly formed on the wafer body to define a scribe line as a margin formed between each two dies wherein each of the dies has an internal circuit formed therewithin and at least a terminal pad formed along the scribe line, and a conductive arrangement including at least a conductive element formed on the wafer body to electrically connect the terminal pad with the internal circuit of the die in such a manner that when the die is cut off from the wafer body along the scribe line, the terminal pad is cut off from the die so as to keep the internal circuit in the die.
Abstract: Power MOSFETs and fabrication processes for power MOSFETs use a continuous conductive gate structure within trenches to avoid problems arising from device topology caused when a gate bus extends above a substrate surface. The gate bus trench and/or gate structures in the device trenches can contain a metal/silicide to reduce resistance, where polysilicon layers surround the metal/silicide to prevent metal atoms from penetrating the gate oxide in the device trenches. CMP process can remove excess polysilicon and metal and planarize the conductive gate structure and/or overlying insulating layers. The processes are compatible with processes forming self-aligned or conventional contacts in the active device region.
Abstract: A “chained implant” technique forms a body region in a trench gated transistor. In one embodiment, a succession of “chained” implants can be performed at the same dose but different energies. In other embodiments different doses and energies can be used, and particularly, more than one dose can be used in a single device. This process produces a uniform body doping concentration and a steeper concentration gradient (at the body-drain junction), with a higher total body charge for a given threshold voltage, thereby reducing the vulnerability of the device to punchthrough breakdown. Additionally, the source-body junction does not, to a first order, affect the threshold voltage of the device, as it does in DMOS devices formed with conventional diffused body processes.