Patents Assigned to Advanced Technology Materials, Inc.
  • Patent number: 9120616
    Abstract: Systems are described for delivery of a wide variety of materials in which liquid and gas or vapor states are concurrently present, from a package preferably including a fluid-containing collapsible liner. Headspace gas is removed from a pressure dispensing package prior to liquid dispensation therefrom, and ingress gas is removed thereafter during dispensation operation. At least one sensor senses presence of gas or a gas-liquid interface in a reservoir or gas-liquid separation region. A gas removal system including an integral reservoir, at least one sensor, and at least one flow control elements may be included within a connector adapted to mate with a pressure dispensing package, for highly efficient removal of gas from the liquid being dispensed from the container.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: September 1, 2015
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Donald D. Ware, Glenn M. Tom, Paul Dathe, Amy Koland, Jason Gerold, Kirk Mikkelsen, Kevin T. O'Dougherty, Michael A. Cisewski
  • Patent number: 9109188
    Abstract: A semiconductor wafer cleaning formulation, including 1-35% wt. fluoride source, 20-60% wt. organic amine(s), 0.1-40% wt. nitrogenous component, e.g., a nitrogen-containing carboxylic acid or an imine, 20-50% wt. water, and 0-21% wt. metal chelating agent(s). The formulations are useful to remove residue from wafers following a resist plasma ashing step, such as inorganic residue from semiconductor wafers containing delicate copper interconnecting structures.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: August 18, 2015
    Assignee: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: William A. Wojtczak, Ma. Fatima Seijo, David Bernhard, Long Nguyen
  • Patent number: 9079758
    Abstract: Fluid storage and dispensing systems and processes involving various structures methods for fluid storage and dispensing, including, pre-connect verification couplings that are usefully employed with fluid storage and dispensing packages to ensure proper coupling and avoid fluid contamination issues, empty detect systems (e.g., monitoring pressure of dispensed liquid medium to detect pressure droop conditions) useable with fluid storage and dispensing packages incorporating liners that are pressure-compressed in the fluid dispensing operation, ergonomically enhanced structures for facilitating removal of a dispense connector from a capped vessel, cap integrity assurance systems for preventing misuse of vessel caps, and keycoding systems for ensuring coupling of proper dispense assemblies and vessels. Fluid storage and dispensing systems achieve zero or near-zero headspace character, and prevent or ameliorate solubilization effects in liquid dispensing from liners in overpack vessels.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: July 14, 2015
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Kevin T. O'Dougherty, Glenn M. Tom
  • Patent number: 9074170
    Abstract: A cleaning composition and process for cleaning post-chemical mechanical polishing (CMP) residue and contaminants from a microelectronic device having said residue and contaminants thereon. The cleaning compositions include novel corrosion inhibitors. The composition achieves highly efficacious cleaning of the post-CMP residue and contaminant material from the surface of the microelectronic device without compromising the low-k dielectric material or the copper interconnect material.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: July 7, 2015
    Assignee: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Jeffrey A. Barnes, Brian Benac, Karl E. Boggs, Lin Feng, Jun Liu, Melissa A. Petruska, Xiaodong Yan, Peng Zhang
  • Patent number: 9073028
    Abstract: Fluid supply systems for storage and dispensing of chemical reagents and compositions, e.g., high purity liquid reagents and chemical mechanical polishing compositions used to manufacture microelectronic device products, having capability for detection of an empty or near-empty condition when the contained liquid is at or approaching depletion during dispensing operation. Fluid delivery systems employing empty detect arrangements are described, including pressure transducer monitoring of dispensed material intermediate the supply package and a servo-hydraulic dispense pump, or monitoring of dispenser chamber replenishment times in a dispenser being replenished on a cyclic schedule to flow material from the dispenser to a downstream tool utilizing the dispensed material.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: July 7, 2015
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Minna Hovinen, John R. Kingery, Glenn M. Tom, Kevin T. O'Dougherty, Kirk Mikkelsen, Donald D. Ware, Peter C. Van Buskirk
  • Patent number: 9074169
    Abstract: Compositions and methods of using said composition for removing polymeric materials from surfaces, preferably cleaning contaminant buildup from a lithography apparatus without total disassembly of said apparatus.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: July 7, 2015
    Assignee: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Tianniu Chen, Steven Bilodeau, Karl E. Boggs, Ping Jiang, Michael B. Korzenski, George Mirth, Kim Y. Van Berkel
  • Patent number: 9067718
    Abstract: A method for folding a liner for packaging and/or insertion into an overpack. The method may include providing a liner comprising a substantially tubular body portion and a closed top and bottom, and a fitment formed in or affixed to the top of the liner, forming a gusset in the bottom panel of the liner, forming a gusset in the body portion of the liner, and fan-folding the liner. In some embodiments, the top of the liner may be a substantially circular top panel and the bottom of the liner may be a substantially circular bottom panel, with the top panel being attached to one end of the tubular body portion and the bottom panel being attached to an opposite end of the tubular body portion. In other embodiments, the liner may be a flexible, blow molded liner, thereby having no weld seams.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: June 30, 2015
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Amy Koland, Richard Chism
  • Patent number: 9062828
    Abstract: The present disclosure relates to a liner for storing a material, the liner including at least two layers, wherein a layer that is in contact with the material is an active layer. The active layer may be made active by incorporating a scavenger into the layer. At least one layer of the liner may comprise a polymer or a fluoropolymer. In some embodiments, the active layer may be configured for removing microbridging components in photoresists. In some embodiments, the active layer may be made active by coating the interior of the layer with an inert material, such as glass. In further embodiments, the liner may be positioned within a stainless steel canister. The present disclosure also relates to a liner-based assembly for storing a material, an overpack within which the liner is positioned, and a purifying packet positioned between the liner and the overpack.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: June 23, 2015
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Glenn Tom, Lawrence H. Dubois
  • Patent number: 9063431
    Abstract: Cleaning compositions and processes for cleaning post-plasma etch residue from a microelectronic device having said residue thereon. The composition achieves highly efficacious cleaning of the residue material, including titanium-containing, copper-containing, tungsten-containing, and/or cobalt-containing post-etch residue from the microelectronic device while simultaneously not damaging the interlevel dielectric, metal interconnect material, and/or capping layers also present thereon.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: June 23, 2015
    Assignee: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Jeffrey A. Barnes, Steven Lippy, Peng Zhang, Rekha Rajaram
  • Publication number: 20150162213
    Abstract: Compositions and methods for substantially and efficiently removing NiPt (1-25%) material from microelectronic devices having same thereon. The compositions are substantially compatible with other materials present on the microelectronic device such as gate metal materials.
    Type: Application
    Filed: May 10, 2013
    Publication date: June 11, 2015
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Tianniu Chen, Steven M. Bilodeau, Emanuel I. Cooper, Li-Min Chen, Jeffrey A. Barnes, Mark Biscotto, Karl E. Boggs, Rekha Rajaram
  • Patent number: 9045717
    Abstract: A cleaning agent for a microelectronic device provided with metal wiring, which has an excellent ability to remove polishing particle residues derived from a polishing agent and an excellent ability to remove metallic residues on an insulating film, and has excellent anticorrosiveness to the metal wiring. The cleaning agent is used at a step subsequent to chemical mechanical polishing in a manufacturing process of a microelectronic device in which a metal wiring, e.g., copper or tungsten, is formed.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: June 2, 2015
    Assignee: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Mutsumi Nakanishi, Hiroshi Yoshimochi, Yukichi Koji
  • Publication number: 20150147824
    Abstract: A silicon precursor composition is described, including a silylene compound selected from among: silylene compounds of the formula: wherein each of R and R1 is independently selected from organo substituents; amidinate silylenes; and bis(amidinate) silylenes. The silylene compounds are usefully employed to form high purity, conformal silicon-containing films of Si02, Si3N4, SiC and doped silicates in the manufacture of microelectronic device products, by vapor deposition processes such as CVD, pulsed CVD, ALD and pulsed plasma processes. In one implementation, such silicon precursors can be utilized in the presence of oxidant, to seal porosity in a substrate comprising porous silicon oxide by depositing silicon oxide in the porosity at low temperature, e.g., temperature in a range of from 50° C. to 200° C.
    Type: Application
    Filed: May 22, 2013
    Publication date: May 28, 2015
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Thomas M. Cameron, Susan V. DiMeo, Bryan C. Hendrix, Weimin Li
  • Patent number: 9038855
    Abstract: Systems and methods for delivering fluid-containing feed materials to process equipment are disclosed. A liner-based pressure dispensing vessel is subjected to filling by application of vacuum between the liner and overpack. Multiple feed material flow controllers of different calibrated flow ranges may be selectively operated in parallel for a single feed material. Feed material blending and testing for scale-up may be performed with feed materials supplied by multiple liner-based pressure dispensing containers. A gravimetric system may be used to determine concentration of at least one component of a multi-component solution or mixture.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: May 26, 2015
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Steven M. Lurcott, John E. Q. Hughes, Peter Wrschka, Thomas H. Baum, Donald D. Ware, Peng Zou
  • Publication number: 20150114429
    Abstract: A cleaning composition and process for cleaning post-chemical mechanical polishing (CMP) residue and contaminants from a microelectronic device having said residue and contaminants thereon. The cleaning compositions include at least one quaternary base, at least one amine, at least one corrosion inhibitor, and at least one solvent. The composition achieves highly efficacious cleaning of the post-CMP residue and contaminant material from the surface of the microelectronic device while being compatible with barrier layers.
    Type: Application
    Filed: May 17, 2013
    Publication date: April 30, 2015
    Applicants: ATMI Taiwan Co., Ltd., Advanced Technology Materials, Inc.
    Inventors: Shrane Ning Jenq, Karl E. Boggs, Jun Liu, Nicole Thomas
  • Patent number: 8951948
    Abstract: A liquid removal composition and process for removing sacrificial anti-reflective coating (SARC) material from a substrate having same thereon. The liquid removal composition includes at least one fluoride-containing compound, at least one organic solvent, optionally water, and optionally at least one chelating agent. The composition achieves at least partial removal of SARC material in the manufacture of integrated circuitry with minimal etching of metal species on the substrate, such as aluminum, copper and cobalt alloys, and without damage to low-k dielectric materials employed in the semiconductor architecture.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: February 10, 2015
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Melissa K. Rath, David D. Bernhard, Thomas H. Baum, David W. Minsek
  • Publication number: 20150027978
    Abstract: Compositions useful for the selective removal of titanium nitride and/or photoresist etch residue materials relative to metal conducting, e.g., tungsten, and insulating materials from a microelectronic device having same thereon. The removal compositions contain at least one oxidant and one etchant, may contain various corrosion inhibitors to ensure selectivity.
    Type: Application
    Filed: December 27, 2012
    Publication date: January 29, 2015
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Jeffrey A. Barnes, Emanuel I. Cooper, Li-Min Chen, Steven Lippy, Rekha Rajaram, Sheng-Hung Tu
  • Publication number: 20150027202
    Abstract: A system and method for recovering high value gas from a process stream, material or environment containing same, e.g., xenon by contacting gas from the process stream, material or environment with a carbon adsorbent effective to sorptively capture same, free of or with reduced concentration of fluid species present with the high value gas in the high value gas-containing gas in the process stream, material or environment. Other aspects of the disclosure include a radon detection method and product.
    Type: Application
    Filed: October 4, 2014
    Publication date: January 29, 2015
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Thomas H. Baum, J. Donald Carruthers, Richard Fricke, Joshua B. Sweeney, James V. McManus, Edward A. Sturm
  • Publication number: 20150027909
    Abstract: A pyrolyzed monolith carbon physical adsorbent that is characterized by at least one of the following characteristics: (a) a fill density measured for arsine gas at 25° C. and pressure of 650 torr that is greater than 400 grams arsine per liter of adsorbent; (b) at least 30% of overall porosity of the adsorbent including slit-shaped pores having a size in a range of from about 0.3 to about 0.72 nanometer, and at least 20% of the overall porosity including micropores of diameter<2 nanometers; and (c) having a bulk density of from about 0.80 to about 2.0 grams per cubic centimeter, preferably from 0.9 to 2.0 grams per cubic centimeter.
    Type: Application
    Filed: October 14, 2014
    Publication date: January 29, 2015
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventor: J. Donald Carruthers
  • Publication number: 20150032253
    Abstract: An electronic storage device is coupled with a container capable of holding liquid for electronically storing information relating to the liquid stored in the container. The system can be configured with an antenna, for storing information to and reading information from the electronic storage device. A microprocessor-based controller, coupled with the antenna, may be employed for controlling processing of the liquid based on information read from the electronic storage device by the antenna. A connector of a secure reader system having a reader is provided to physically couple to a container having an information storing mechanism, for periodically reading information from an information storing mechanism. The connector may draw material from the container simultaneous with the reading.
    Type: Application
    Filed: September 26, 2014
    Publication date: January 29, 2015
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Kevin T. O'Dougherty, Robert E. Andrews, Tripunithura V. Jayaraman, Joseph P. Menning, Christopher A. Baye-Wallace
  • Publication number: 20140342538
    Abstract: An ion implantation system and method, providing cooling of dopant gas in the dopant gas feed line, to combat heating and decomposition of the dopant gas by arc chamber heat generation, e.g., using boron source materials such as B2F4 or other alternatives to BF3. Various arc chamber thermal management arrangements are described, as well as modification of plasma properties, specific flow arrangements, cleaning processes, power management, eqillibrium shifting, optimization of extraction optics, detection of deposits in flow passages, and source life optimization, to achieve efficient operation of the ion implantation system.
    Type: Application
    Filed: August 5, 2014
    Publication date: November 20, 2014
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Edward E. Jones, Sharad N. Yedave, Ying Tang, Barry Lewis Chambers, Robert Kaim, Joseph D. Sweeney, Oleg Byl, Peng Zou