Abstract: The present invention provides a hydrogen sensor including a thin film sensor element formed by metal organic chemical vapor deposition (MOCVD) or physical vapor deposition (PVD), on a micro-hotplate structure. The thin film sensor element includes a film of a hydrogen-interactive metal film that reversibly interacts with hydrogen to provide a correspondingly altered response characteristic, such as optical transmissivity, electrical conductance, electrical resistance, electrical capacitance, magneto resistance, photoconductivity, etc., relative to the response characteristic of the film in the absence of hydrogen. The hydrogen-interactive metal film may be overcoated with a thin film hydrogen-permeable barrier layer to protect the hydrogen-interactive film from deleterious interaction with non-hydrogen species. The hydrogen permeable barrier may comprise species to scavenge oxygen and other like species.
Abstract: An apparatus and method for the indirect determination of concentrations of additives in metal plating electrolyte solutions, particularly organic additives in Cu-metalization baths for semiconductor manufacturing. Plating potentials between the reference and test electrodes are measured and plotted for each of the solution mixtures, and data are extrapolated to determine the concentration of the additive in the sample. A multi-cycle method determines the concentration of both accelerator and suppressor organic additives in Cu plating solution in a single test suite.
Abstract: A fluid storage and dispensing system including a vessel containing a low heel carbon sorbent having fluid adsorbed thereon, with the system arranged to effect desorption of the fluid from the sorbent for dispensing of fluid on demand. The low heel carbon sorbent preferably is characterized by at least one of the following characteristics: (i) Heel, measured for gaseous arsine (AsH3) at 20° C. at 20 Torr, of not more than 50 grams AsH3 per liter of bed of the sorbent material; (ii) Heel, measured for gaseous boron trifluoride (BF3) at 20° C. at 20 Torr, of not more than 20 grams boron trifloride per liter of bed of the sorbent material; (iii) Heel, measured for gaseous germanium tetrafluoride (GeF4) at 20° C. at 20 Torr, of not more than 250 grams AsH3 per liter of bed of the sorbent material; (iv) Heel, measured for gaseous arsenic pentafluoride (AsF5) at 20° C.
Abstract: Compositions useful for chemical vapor delivery (CVD) formation of copper layers in semiconductor integrated circuits, e.g., interconnect metallization in semiconductor device structures, as an adhesive seed layer for plating, for the deposition of a thin-film recording head or for circuitization of packaging components. The copper precursor formulation may include one or more copper precursors, e.g., a precursor of the formula hfac(Cu)L where L is a low-cost ligand such as an alkene and/or alkyne such as [(hfac)Cu]2 (DMDVS). The formulation may include in addition to the copper precursor(s) one or more low-cost ligand species such as alkenes, alkynes, dienes and combinations thereof, to increase thermal stability of the formulation and provide enhanced vaporization properties for CVD.
Abstract: An auto-switching sub-atmospheric pressure gas delivery system, for dispensing gas to a gas-consuming process unit, e.g., a semiconductor manufacturing tool, without the occurrence of pressure spikes or flow perturbations.
Abstract: The present invention relates to a method and system for non-thermal abatement of effluent species generated in a semiconductor processing unit. In the method, an effluent stream is introduced into a discharge reactor wherein the components of the effluent stream are subjected to a corona discharge and maintained therein for a sufficient time to detoxify and/or dissociate the harmful components of the effluent stream. The discharge reactor, maintained at approximately atmospheric pressure, is positioned after the low-pressure semiconductor processing chamber and connecting vacuum pump system to limit interference with the semiconductor plasma processing tool.
Abstract: A semiconductor wafer cleaning formulation, including 2-98% wt. organic amine, 0-50% wt. water, 0.1-60% wt. 1,3-dicarbonyl compound chelating agent, 0-25% wt. of additional different chelating agent(s), 0.1-40% wt. nitrogen-containing carboxylic acid or an imine, and 2-98% wt polar organic solvent. The formulations are useful to remove residue from wafers following a resist plasma ashing step, such as inorganic residue from semiconductor wafers containing delicate copper interconnecting structures.
Type:
Grant
Filed:
December 5, 2001
Date of Patent:
May 20, 2003
Assignee:
Advanced Technology Materials, Inc.
Inventors:
William A. Wojtczak, Ma. Fatima Seijo, Dave Bernhard, Long Nguyen
Abstract: A fluid distribution system for supplying a gas to a process facility such as a semiconductor manufacturing plant. The system includes a main fluid supply vessel coupled by flow circuitry to a local sorbent-containing supply vessel from which fluid, e.g., low pressure compressed gas, is dispensed to a fluid-consuming unit, e.g., a semiconductor manufacturing tool. A fluid pressure regulator is disposed in the flow circuitry or the main liquid supply vessel and ensures that the gas flowed to the fluid-consuming unit is at desired pressure. The system and associated method are particularly suited to the supply and utilization of liquefied compressed gases such as trimethylsilane, arsine, phosphine, and dichlorosilane.
Type:
Grant
Filed:
June 5, 2001
Date of Patent:
May 13, 2003
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Luping Wang, Terry A. Tabler, James A. Dietz
Abstract: A highly reliable bulk chemical delivery system for high purity chemicals employing a manifold that ensures contamination free operation and canister change outs with a minimum of valves and tubing.
Type:
Grant
Filed:
July 16, 2001
Date of Patent:
May 6, 2003
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Stephen H. Siegele, Craig M. Noah, John N. Gregg
Abstract: An indium precursor composition having utility for incorporation of indium in a microelectronic device structure, e.g., as an indium-containing film on a device substrate by bubbler or liquid delivery MOCVD techniques, or as a dopant species incorporated in a device substrate by ion implantation techniques. The precursor composition includes a precursor of the formula R1R2InL wherein: R1 and R2 may be same or different and are independently selected from C6-C10 aryl, C6-C10 fluoroaryl, C6-C10 perfluoroaryl, C1-C6 alkyl, C1-C6 fluoroalkyl, or C1-C6 perfluoroalkyl; and L is &bgr;-diketonato or carboxylate. Indium-containing metal films may be formed on a substrate, such as indium-copper metallization, and shallow junction indium ion-implanted structures may be formed in integrated circuitry, using the precursors of the invention.
Abstract: A method and system for retrofitting an integrated scrubber to provide maximum oxygen content in a controlled decomposition oxidation (CDO) abatement process. The system includes a thermal/wet integrated scrubber, and a compressed air supply for supplying air to an oxygen separation device that separates the air into a nitrogen-enriched component and an oxygen-enriched component. The oxygen separation device utilizes a ceramic oxide or polymeric material to separate from the supplied air an oxygen-enriched component for introduction into the integrated scrubber. The integrated scrubber is equipped with a mechanical scraping device for continuous or intermittent removal of combustion deposits formed during the controlled decomposition oxidation process.
Type:
Grant
Filed:
July 23, 2001
Date of Patent:
April 22, 2003
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Belynda G. Flippo, Robbert Vermuellen, Daniel O. Clark
Abstract: The present invention provides a reaction chamber cleaning apparatus comprising a chamber, a blade apparatus comprising at least one annular mounting member, at least four scraping blades attached peripherally about the annular mounting member, and a reciprocal movement unit for rotating said scraping blade(s) circumferentially back and forth along the interior surface of said chamber to scrape the interior surface of said chamber; said reaction chamber cleaning apparatus also comprising a vortex unit comprising a generally conical outer shell attached to and extending downwardly from the top plate top plate, and a liquid inlet arranged in relation to the outer shell to tangentially introduce liquid into the outer shell, thereby forming a laminar sheet of fluid on the inner surface of the outer shell; said vortex unit further comprising a baffle and a concentric chamber bounded by the outer surface of the baffle, the inner surface of the outer shell, and the bottom surface of the top plate.
Abstract: An improved double chamber ion source comprising a plasma generating chamber, a charge exchange chamber and a divider structure therebetween. The charge exchange chamber includes magnetic shielding material to reduce exposure of interior components to magnetic field lines externally generated. The double compartment ion source further comprises inclusion of a heat shield and/or a cooling system to overcome deleterious effects caused by increased temperature in the plasma generating chamber. The divider structure has a plurality of apertures having a configuration to reduce surface area on the divider structure in the charge exchange chamber.
Abstract: An ion implantation process system, including an ion implanter apparatus for carrying out an ion implantation process. A supply of source gas for the ion implantation process is arranged to flow to the ion implanter apparatus, which discharges an effluent gas stream including ionization products of the source gas during the ion implantation process. The system includes an effluent abatement apparatus for removing hazardous effluent species from the effluent gas stream. The source gas may be furnished from a low pressure gas source in which the source gas is sorptively retained in a vessel on a sorbent medium having affinity for the source gas, and desorbed for dispensing to the process system. A novel scrubbing composition may be employed for effluent treatment, and the scrubbing composition breakthrough of scrubbable component may be monitored with a device such as a quartz microbalance monitor.
Type:
Grant
Filed:
November 29, 2001
Date of Patent:
April 1, 2003
Assignee:
Advanced Technology Materials, Inc
Inventors:
Michael W. Hayes, Mark R. Holst, Jose I. Arno, Glenn M. Tom
Abstract: A gas supply system including a gas cabinet defining an enclosure including therein a gas dispensing manifold and one or more adsorbent-based gas storage and dispensing vessels mounted in the enclosure and joined in gas flow communication with the gas dispensing manifold. The enclosure may be maintained under low or negative pressure conditions for enhanced safety in the event of leakage of gas from the gas storage and dispensing vessel(s) in the enclosure. The gas supply system may be coupled to a gas-consuming unit in a semiconductor manufacturing facility, e.g., an ion implanter, an etch chamber, or a chemical vapor deposition reactor.
Abstract: A method and apparatus for abatement of effluent from a CVD process using a source reagent having a metal organic loosely bound to a organic or organomettalic molecule such that upon exposure to heat such bond is readily cleavable, e.g., copper deposition process involving the formation of films on a substrate by metalorganic chemical vapor deposition (CVD) utilizing a precursor composition for such film formation. The abatement process in specific embodiments facilitates high efficiency abatement of effluents from copper deposition processes utilizing Cu(hfac)TMVS as a copper source reagent.
Type:
Grant
Filed:
April 6, 2001
Date of Patent:
March 25, 2003
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Mark Holst, Ray Dubois, Jose Arno, Rebecca Faller, Glenn Tom
Abstract: A method of forming a (gallium, aluminum, indium) nitride base layer on a substrate for subsequent fabrication, e.g., by MOCVD or MBE, of a microelectronic device structure thereon. Vapor-phase (Ga, Al, In) chloride is reacted with a vapor-phase nitrogenous compound in the presence of the substrate, to form (Ga, Al, In) nitride. The (Ga, Al, In) nitride base layer is grown on the substrate by HVPE, to yield a microelectronic device base comprising a substrate with the (Ga, Al, In) nitride base layer thereon. The product of such HVPE process comprises a device quality, single crystal crack-free base layer of (Ga, Al, In) N on the substrate, in which the thickness of the base layer may, for example, be on the order of 2 microns and greater and the defect density of the base layer may, for example, be on the order of 1E8 cm−2 or lower. Microelectronic devices thereby may be formed on the base layer, over a substrate of a foreign (poor lattice match) material, such as sapphire.
Type:
Grant
Filed:
September 7, 2000
Date of Patent:
March 18, 2003
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Robert P. Vaudo, Joan M. Redwing, Michael A. Tischler, Duncan W. Brown, Jeffrey S. Flynn
Abstract: A chemical mechanical polishing slurry and method for using the slurry for polishing copper, barrier material and dielectric material that comprises a first and second slurry. The first slurry has a high removal rate on copper and a low removal rate on barrier material. The second slurry has a high removal rate on barrier material and a low removal rate on copper and dielectric material. The first and second slurries at least comprise silica particles, an oxidizing agent, a corrosion inhibitor, and a cleaning agent.
Type:
Grant
Filed:
December 18, 2001
Date of Patent:
March 4, 2003
Assignee:
Advanced Technology Materials, Inc.
Inventors:
William A. Wojtczak, Thomas H. Baum, Long Nguyen, Cary Regulski
Abstract: A method and system for retrofitting an integrated scrubber to provide maximum oxygen content in a controlled decomposition oxidation (CDO) abatement process including a thermal/wet integrated scrubber, and a compressed air supply for supplying air to an oxygen separation device that separates the air into a nitrogen-enriched component and an oxygen-enriched component. The oxygen separation device includes a module, such as a vessel containing ceramic-materials arranged in an adsorbent bed or coated on a substrate. The present invention uses a ceramic oxide material through which only oxygen can diffuse. The composition of the ceramic oxide adsorbent material is such that a significant number of oxygen vacancies exist in the material. By placing either a voltage potential or a pressure gradient across the membrane, oxygen is selectively diffused in and through the oxide material to separate the air supply into an oxygen component for introduction into the integrated scrubber.
Type:
Grant
Filed:
March 19, 2001
Date of Patent:
March 4, 2003
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Belynda G. Flippo, Keith Karrup, Robbert Vermeulen, Daniel O. Clark
Abstract: In a first respect this invention is a container, comprising: a cylindrical, hollow body capped on both ends by a base and a top; a conduit that bisects the top and extends into the interior of the container; and a perforated housing that encompasses the portion of the conduit that extends into the interior of the container. In another broad respect, this invention is a removable splash guard, comprising: a housing having a top and bottom that define an internal space; a lower tube that bisects the bottom, wherein the lower tube has a upper portion which is angled; an upper tube that bisects the top, wherein a portion of the second tube that extends into the internal space contains at least one hole; and a partition interposed between the upper and lower tubes that serves to block movement of a chemical from the lower tube to the opening at the inboard end of the upper tube.
Type:
Grant
Filed:
September 3, 1998
Date of Patent:
February 18, 2003
Assignee:
Advanced Technology Materials, Inc.
Inventors:
John N. Gregg, Gregory W. Harris, Frank L. Cook, Robert M. Jackson