Abstract: A liquid delivery MOCVD method for deposition of dielectric materials such as (Ba,Sr) titanates and (Zr,Sn) titanates, in which metal source compounds are dissolved or suspended in solvent and flash vaporized at temperatures of from about 100° C. to about 300° C. and carried via a carrier gas such as argon, nitrogen, helium, ammonia or the like, into a chemical vapor deposition reactor wherein the precursor vapor is mixed with an oxidizing co-reactant gas such as oxygen, ozone, N2O, etc., to deposit the high dielectric metal oxide film on the substrate at a temperature of from about 400° C. to about 1200° C. at a chemical vapor deposition chamber pressure of from about 0.1 torr to about 760 torr. Such process may for example be employed to form a (Ba,Sr) titanate dielectric material wherein at least 60 atomic % of the total metal content of the oxide is titanium.
Type:
Grant
Filed:
December 18, 1998
Date of Patent:
August 21, 2001
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Gregory T. Stauf, Jeffrey F. Roeder, Thomas H. Baum
Abstract: Integrated circuits, including field emission devices, have a resistor element of amorphous SixC1-x wherein 0<x<1, and wherein the SixC1-x incorporates at least one impurity selected from the group consisting of hydrogen, halogens, nitrogen, oxygen, sulphur, selenium, transition metals, boron, aluminum, phosphorus, gallium, arsenic, lithium, beryllium, sodium and magnesium.
Type:
Grant
Filed:
December 14, 1999
Date of Patent:
July 31, 2001
Assignees:
Advanced Technology Materials, Inc., Silicon Video Corporation
Inventors:
George R. Brandes, Charles P. Beetz, Xueping Xu, Swayambu V. Ramani, Ronald S. Besser
Abstract: A planarization composition is set forth in accordance with an embodiment of the invention. The composition comprises spherical silica particles having a weight average particle diameter which falls within the range from about 0.03&mgr; to about 2&mgr; and is monodisperse in that at least about 90 weight percent of the particles have a variation in particle diameter from the average particle diameter of no more than about ±20%. A liquid carrier comprising up to 20 weight percent ROH, and an amine hydroxide which is NR4OH or NR2NR3OH, where each R is HCH3, CH2CH3, C3H7 or C4H9, in the amount of 0.1 to 10 weight percent; an oxidizer which is in the amount from about 0.5% to 15% weight percent; an acid stabilizer for adjusting the pH to fall within a range from about 7.0 to about 0.5; and the remainder is water. The invention also relates to a thinning, polishing and planarizing apparatus and to a method for carrying out the thinning, polishing and planarizing operation.
Type:
Grant
Filed:
October 12, 1999
Date of Patent:
July 31, 2001
Assignee:
Advanced Technology & Materials Inc.
Inventors:
James E. Currie, Michael Jones, Thomas J. Grebinski
Abstract: A bulk chemical delivery system, that includes a cabinet that houses a delivery system. The delivery system may include a canister within the cabinet that is connected to a manifold within the cabinet that includes at least one output line for providing chemical from the canister outside the cabinet. The delivery system may further include an input system that provides input for operation of the delivery system, wherein the input system is housed in an enclosure, and an inert gas line that connects and supplies inert gas to the enclosure.
Type:
Grant
Filed:
June 8, 1999
Date of Patent:
July 17, 2001
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Craig M. Noah, John N. Gregg, Robert M. Jackson, Craig Esser
Abstract: An apparatus and method are provided for treating pollutants in a gaseous stream. The apparatus comprises tubular inlets for mixing a gas stream with other oxidative and inert gases for mixture within a reaction chamber. The reaction chamber is heated by heating elements and has orifices through which cool or heated air enters into the central reaction chamber. A process is also provided whereby additional gases are added to the gaseous stream preferably within the temperature range of 650 C.-950° C. which minimizes or alleviates the production of NOx.
Type:
Grant
Filed:
April 20, 1999
Date of Patent:
July 17, 2001
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Timothy L. Herman, Jack Ellis, Floris Y. Tsang, Daniel O. Clark, Belynda Flippo, David Inori, Keith Kaarup, Mark Morgenlaender, Aaron Mao
Abstract: Group II metal MOCVD precursor compositions are described having utility for MOCVD of the corresponding Group II metal-containing films. The complexes are Group II metal &bgr;-diketonate adducts of the formula M(&bgr;-diketonate)2(L)4 wherein M is the Group II metal and L is tetrahydrofuran. Such source reagent complexes of barium and strontium are usefully employed in the formation of barium strontium titanate and other Group II thin films on substrates for microelectronic device applications, such as integrated circuits, ferroelectric memories, switches, radiation detectors, thin-film capacitors, microelectromechanical structures (MEMS) and holographic storage media.
Abstract: A sub-atmospheric gas delivery system (100) with a backflow control apparatus (10) for preventing backflow into the sub-atmospheric gas source (14). The gas delivery system includes three fluidly coupled sticks: a purge stick (120), a process gas delivery stick (124) and an evacuation stick (130). The backflow control apparatus comprises a gas line (26) fluidly coupling the sub-atmospheric gas source to a chamber (50), a valve (20) attached to the sub-atmospheric gas source for blocking fluid communication between the gas source and the gas line upon receipt of a first signal, a flow restrictor (R) in fluid communication with the gas line and positioned between the valve and the chamber, and first and second pressure transducers (P1 and P2) in fluid communication with the gas line and positioned on either side of the flow restrictor. Each transducer is capable of generating a signal representative of pressure.
Type:
Grant
Filed:
October 24, 2000
Date of Patent:
July 3, 2001
Assignees:
International Business Machines, Advanced Technology Materials, Inc.
Inventors:
Kurt A. Carlsen, James McManus, James Dietz
Abstract: A method for removing from a microelectronic device structure a noble metal residue including at least one metal selected from the group consisting of platinum, palladium, iridium and rhodium, by contacting the microelectronic device structure with a cleaning gas including a reactive halide composition, e.g., XeF2, SF6, SiF4, Si2F6 or SiF3 and SiF2 radicals. The method may be carried out in a batch-cleaning mode, in which fresh charges of cleaning gas are successively introduced to a chamber containing the residue-bearing microelectronic device structure. Each charge is purged from the chamber after reaction with the residue, and the charging/purging is continued until the residue has been at least partially removed to a desired extent. Alternatively, the cleaning gas may be continuously flowed through the chamber containing the microelectronic device structure, until the noble metal residue has been sufficiently removed.
Type:
Grant
Filed:
June 8, 1998
Date of Patent:
July 3, 2001
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Peter C. Van Buskirk, Frank DiMeo, Jr., Peter C. Kirlin, Thomas H. Baum
Abstract: A solvent composition for liquid delivery chemical vapor deposition of metal organic precursors, to form metal-containing films such as SrBi2Ta2O9 (SBT) films for memory devices. An SBT film may be formed using precursors such as Sr(thd)2(tetraglyme), Ta(OiPr)4(thd) and Bi(thd)3 which are dissolved in a solvent medium comprising one or more alkanes. Specific alkane solvent compositions may advantageously used for MOCVD of metal organic compound(s) such as &bgr;-diketonate compounds or complexes, compound(s) including alkoxide ligands, and compound(s) including alkyl and/or aryl groups at their outer (molecular) surface, or compound(s) including other ligand coordination species and specific metal constituents.
Abstract: A semiconductor wafer cleaning formulation for use in post plasma ashing semiconductor fabrication comprising the following components in the percentage by weight ranges shown:
Ammonium fluoride and/or a derivative thereof;
1-21%
an organic amine or mixture of two amines;
20-55%
water;
23-50%
a metal chelating agent or mixture of chelating agents.
Type:
Grant
Filed:
August 29, 1997
Date of Patent:
May 1, 2001
Assignee:
Advanced Technology Materials, Inc.
Inventors:
William A. Wojtczak, George Guan, Daniel N. Fine, Stephen A. Fine
Abstract: A microcontroller software testing tool is disclosed for testing and debugging software for a semiconductor circuit. The microcontroller software testing tool includes a simulator for simulating the execution of the software program on the target semiconductor circuit and an emulator to permit emulation before the actual silicon exists. The emulator utilizes the same high definition language specification, such as VHDL models, that define the silicon during the fabrication process plus additional logic to model behavior of the emulated processor. In a simulation mode, the microcontroller software testing tool simulates the target semiconductor circuit on a general purpose computing device, by interpreting the instructions in the software using an instruction set of the target semiconductor circuit, and otherwise behaving like the target semiconductor circuit; and executes and evaluates the software on the simulated semiconductor circuit.
Abstract: A logic level detection circuit that includes a sense amplifier and a consumption equilibration circuit that is topologically distinct from the sense amplifier and that reduces and/or substantially eliminates data dependent electrical consumption by having a data dependent electrical consumption that compensates the data dependent electrical consumption of the sense amplifier. The sense amplifier may be implemented as a current-sensing sense amplifier, and the consumption equilibration circuit may be implemented as a selectively enabled current source that is responsive to a signal generated by the current-sensing sense amplifier. The consumption equilibration circuit may be implemented with a small number of transistors and in a small chip area compared to the number of transistors and chip area used for implementing the sense amplifier.
Abstract: Group II metal MOCVD precursor compositions are described having utility for MOCVD of the corresponding Group II metal-containing films. The complexes are Group II metal &bgr;-diketonate adducts of the formula M(&bgr;-diketonate)2(L)4 wherein M is the Group II metal and L is tetrahydrofuran. Such source reagent complexes of barium and strontium are usefully employed in the formation of barium strontium titanate and other Group II thin films on substrates for microelectronic device applications, such as integrated circuits, ferroelectric memories, switches, radiation detectors, thin-film capacitors, microelectromechanical structures (MEMS) and holographic storage media.
Abstract: A solvent composition for liquid delivery chemical vapor deposition of metal organic precursors, to form metal-containing films such as SrBi2Ta2O9 (SBT) films for memory devices. An SBT film may be formed using precursors such as Sr(thd)2(tetraglyme), Ta(OiPr)4(thd) and Bi(thd)3 which are dissolved in a solvent medium comprising one or more alkanes. Specific alkane solvent compositions may advantageously used for MOCVD of metal organic compound(s) such as &bgr;-diketonate compounds or complexes, compound(s) including alkoxide ligands, and compound(s) including alkyl and/or aryl groups at their outer (molecular) surface, or compound(s) including other ligand coordination species and specific metal constituents.
Abstract: A semiconductor wafer cleaning formulation for use in post plasma ashing semiconductor fabrication comprising the following components in the percentage by weight ranges shown: an organic amine 2-98%; water 0-50%; a 1,3-dicarbonyl compound chelating agent 0.1-60%; a second or alternative chelating agent 0-25%; a polar organic solvent 2-98%.
Type:
Grant
Filed:
August 20, 1999
Date of Patent:
April 3, 2001
Assignee:
Advanced Technology Materials, Inc.
Inventors:
William A. Wojtczak, George Guan, Stephen A. Fine
Abstract: A scavenger layer is provided to prevent the diffusion of an excess mobile specie from a metal oxide ceramic into unwanted parts of a device. The scavenger layer is provided above the metal oxide ceramic. As the excess mobile specie diffuses out of the metal oxide ceramic, it migrates toward the scavenger layer and reacts with it. The reaction consumes the excess mobile specie.
Type:
Grant
Filed:
December 18, 1998
Date of Patent:
March 20, 2001
Assignees:
Advanced Technology Materials, Inc., Infineon Technologies North America Corp.
Inventors:
Bryan C. Hendrix, Frank S. Hintermaier, Jeffrey F. Roeder, Thomas H. Baum, Debra A. Desrochers
Abstract: An indium precursor composition having utility for incorporation of indium in a microelectronic device structure, e.g., as an indium-containing film on a device substrate by bubbler or liquid delivery MOCVD techniques, or as a dopant species incorporated in a device substrate by ion implantation techniques. The precursor composition includes a precursor of the formula R1R2InL wherein: R1 and R2 may be same or different and are independently selected from C6-C10 aryl, C6-C10 fluoroaryl, C6-C10 perfluoroaryl, C1-C6 alkyl, C1-C6 fluoroalkyl, or C1-C6 perfluoroalkyl; and L is &bgr;-diketonato or carboxylate. Indium-containing metal films may be formed on a substrate, such as indium-copper metallization, and shallow junction indium ion-implanted structures may be formed in integrated circuitry, using the precursors of the invention.
Abstract: A process for fabricating an electronic device structure on or in a substrate. A storage and dispensing vessel is provided, containing a solid-phase physical sorbent medium having physically adsorbed thereon a fluid for fabrication of the electronic device structure, e.g., a source fluid for a material constituent of the electronic device structure, or a reagent such as an etchant or mask material which is utilized in the fabrication of the electronic device structure but does not compose or form a material constituent of the electronic device structure. In the process, the source fluid is desorbed from the physical sorbent medium and dispensing source fluid from the storage and dispensing vessel, and contacted with the substrate, under conditions effective to utilize the material constituent on or in the substrate.
Type:
Grant
Filed:
December 31, 1997
Date of Patent:
March 20, 2001
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Glenn M. Tom, Peter S. Kirlin, James V. McManus
Abstract: A piezoelectric gas sensing device, comprising: (a) a piezoelectric element arranged for gas sensing exposure to a gas environment; (b) a layer of a gas-retentive support material on the piezoelectric element which is retentively effective for a gas component potentially present in the gas environment; and (c) a gas-interactive material associated with the retentive support material, and sorptively effective to form a solid interaction product in interaction with the gas component potentially present in the gas environment, with the solid interaction product imparting a changed frequency response to the piezoelectric gas sensing device, in relation to a corresponding piezoelectric gas sensing device in the absence of the solid interaction product resulting from presence of the gas component in the gas environment. The device can be utilized to detect the presence and/or concentration of a gas species such as a hydride, hydrocarbon, silane, etc. in the fluid being monitored by the device.