Patents Assigned to Advanced Technology Materials
  • Patent number: 8109130
    Abstract: A gas detector and process for detecting a fluorine-containing species in a gas containing same, e.g., an effluent of a semiconductor processing tool undergoing etch cleaning with HF, NF3, etc. The detector in a preferred structural arrangement employs a microelectromechanical system (MEMS)-based device structure and/or a free-standing metal element that functions as a sensing component and optionally as a heat source when elevated temperature sensing is required. The free-standing metal element can be fabricated directly onto a standard chip carrier/device package so that the package becomes a platform of the detector.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: February 7, 2012
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Frank Dimeo, Jr., Philip S. H. Chen, Jeffrey W. Neuner, James Welch, Michele Stawasz, Thomas H. Baum, Mackenzie E. King, Ing-Shin Chen, Jeffrey F. Roeder
  • Patent number: 8093140
    Abstract: Germanium, tellurium, and/or antimony precursors are usefully employed to form germanium-, tellurium- and/or antimony-containing films, such as films of GeTe, GST, and thermoelectric germanium-containing films. Processes for using these precursors to form amorphous films are also described. Further described is the use of [{nBuC(iPrN)2}2Ge] or Ge butyl amidinate to form GeTe smooth amorphous films for phase change memory applications.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: January 10, 2012
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Philip S. H. Chen, William Hunks, Tianniu Chen, Matthias Stender, Chongying Xu, Jeffrey F. Roeder, Weimin Li
  • Patent number: 8062965
    Abstract: An isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio greater than a natural abundance concentration or ratio thereof. The compound may have a chemical formula of B2F4. Synthesis methods for such compounds, and ion implantation methods using such compounds, are described, as well as storage and dispensing vessels in which the isotopically-enriched, boron-containing compound is advantageously contained for subsequent dispensing use.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 22, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Robert Kaim, Joseph D. Sweeney, Oleg Byl, Sharad N. Yedave, Edward E. Jones, Peng Zou, Ying Tang, Barry Lewis Chambers, Richard S. Ray
  • Patent number: 8058219
    Abstract: A liquid removal composition and process for removing photoresist and/or sacrificial anti-reflective coating (SARC) material from a microelectronic device having same thereon. The liquid removal composition includes at least one organic quaternary base and at least one surface interaction enhancing additive. The composition achieves at least partial removal of photoresist and/or SARC material in the manufacture of integrated circuitry with minimal etching of metal species on the microelectronic device, such as copper and cobalt, and without damage to low-k dielectric materials employed in the microelectronic device architecture.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: November 15, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Melissa K. Rath, David D. Bernhard, Thomas H. Baum, Ping Jiang, Renjie Zhou, Michael B. Korzenski
  • Patent number: 8053375
    Abstract: An ultra low k dielectric film, including a silicon film containing porosity deriving from a porogen, as formed from a precursor silane and a porogen, wherein the precursor silane has a water content below 10 ppm, based on total weight of the precursor silane, and/or the porogen has a water content below 10 ppm, based on total weight of the porogen. In one implementation, the precursor silane is diethoxymethylsilane, and the porogen is bicyclo[2.2.1]-hepta-2,5-diene having a trace water content below 10 ppm, based on total weight of said bicyclo[2.2.1]-hepta-2,5-diene. These super-dry reagents are unexpectedly polymerization-resistant during their delivery and deposition in the formation of ultra low k films, and are advantageously employed to produce ultra low k films of superior character.
    Type: Grant
    Filed: October 27, 2007
    Date of Patent: November 8, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Chongying Xu, Jeffrey F. Roeder, Thomas H. Baum, Steven M. Bilodeau, Scott Battle, William Hunks, Tianniu Chen
  • Patent number: 8048191
    Abstract: The present invention provides a compound powder for making magnetic powder cores, a kind of magnetic powder core, and a process for making them. Said compound powder is a mixture composing of powder A and powder B, the content of powder A is 50-96 wt % and the content of powder B is 4-50 wt %, wherein powder A is at least one selected from iron powder, Fe—Si powder, Fe—Si—Al powder, Fe-based nanocrystalline powder, Fe-based amorphous powder, Fe—Ni powder and Fe—Ni—Mo powder; powder B bears different requirement characteristics from powder A and is at least one selected from iron powder, Fe—Si powder, Fe—Si—Al powder, Fe-based nanocrystalline powder, Fe-based amorphous powder, Fe—Ni powder and Fe—Ni—Mo powder. Said powder B adopts Fe-based amorphous soft magnetic powder with good insulation property as insulating agent and thus core loss of magnetic powder core decreases.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: November 1, 2011
    Assignees: Advanced Technology & Material Co., Ltd., Central Iron & Steel Research Institute
    Inventors: Zhichao Lu, Deren Li, Shaoxiong Zhou, Caowei Lu, Feng Guo, Jianliang Li, Jun Wang, Tongchun Zhao, Liang Zhang
  • Patent number: 8034407
    Abstract: A multi-step method for depositing ruthenium thin films having high conductivity and superior adherence to the substrate is described. The method includes the deposition of a ruthenium nucleation layer followed by the deposition of a highly conductive ruthenium upper layer. Both layers are deposited using chemical vapor deposition (CVD) employing low deposition rates.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: October 11, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Bryan C. Hendrix, James J. Welch, Steven M. Bilodeau, Jeffrey F. Roeder, Chongying Xu, Thomas H. Baum
  • Patent number: 8026200
    Abstract: A method and low pH compositions for removing bulk and/or hardened photoresist material from microelectronic devices have been developed. The low pH compositions include at least one mineral acid and at least one oxidizing agent. The low pH compositions effectively remove the hardened photoresist material while not damaging the underlying silicon-containing layer(s).
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: September 27, 2011
    Assignees: Advanced Technology Materials, Inc., International Business Machines Corp.
    Inventors: Emanuel Cooper, Julie Cissell, Renjie Zhou, Michael B. Korzenski, George G. Totir, Mahmoud Khojasteh
  • Patent number: 8008117
    Abstract: Antimony, germanium and tellurium precursors useful for CVD/ALD of corresponding metal-containing thin films are described, along with compositions including such precursors, methods of making such precursors, and films and microelectronic device products manufactured using such precursors, as well as corresponding manufacturing methods. The precursors of the invention are useful for forming germanium-antimony-tellurium (GST) films and microelectronic device products, such as phase change memory devices, including such films.
    Type: Grant
    Filed: August 22, 2010
    Date of Patent: August 30, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: William Hunks, Tianniu Chen, Chongying Xu, Jeffrey F. Roeder, Thomas H. Baum, Melissa A. Petruska, Matthias Stender, Philip S. H. Chen, Gregory T. Stauf, Bryan C. Hendrix
  • Patent number: 8003391
    Abstract: A fluid storage and dispensing vessel having associated therewith a colorimetric member that is effective to change color in exposure to leakage of a gas contained in the vessel. The colorimetric member may be constituted by a film, e.g., of a shrink-wrap character, that contains or is otherwise associated with a colorimetric agent undergoing color change in exposure to fluid leaking from the vessel. Such shrink-wrap film may be applied to a portion of the vessel susceptible to leakage, or alternatively to the entire vessel, so that the film is colorimetrically effective to indicate the occurrence of a leakage event by visually perceptible change of color.
    Type: Grant
    Filed: June 30, 2007
    Date of Patent: August 23, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Paul J. Marganski, Jose I. Arno, Edward A. Sturm, Kristy L. Zaleta
  • Patent number: 8002880
    Abstract: A pyrolyzed monolith carbon physical adsorbent that is characterized by at least one of the following characteristics: (a) a fill density measured for arsine gas at 25° C. and pressure of 650 torr that is greater than 400 grams arsine per liter of adsorbent; (b) at least 30% of overall porosity of the adsorbent including slit-shaped pores having a size in a range of from about 0.3 to about 0.72 nanometer, and at least 20% of the overall porosity including micropores of diameter<2 nanometers; and (c) having a bulk density of from about 0.80 to about 2.0 grams per cubic centimeter, preferably from 0.9 to 2.0 grams per cubic centimeter.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: August 23, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventor: J. Donald Carruthers
  • Patent number: 7994108
    Abstract: An aqueous-based composition and process for removing hardened photoresist and/or bottom anti-reflective coating (BARC) material from a microelectronic device having same thereon. The aqueous-based composition includes at least one chaotropic solute, at least one alkaline base, and deionized water. The composition achieves high-efficiency removal of hardened photoresist and/or BARC material in the manufacture of integrated circuitry without adverse effect to metal species on the substrate, such as copper, and without damage to low-k dielectric materials employed in the microelectronic device architecture.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: August 9, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: David W. Minsek, Weihua Wang, David D. Bernhard, Thomas H. Baum, Melissa K. Rath
  • Publication number: 20110180905
    Abstract: A multilayer film stack containing germanium, antimony and tellurium that can be annealed to form a GST product material of homogeneous and smooth character, wherein at least one antimony-containing layer is isolated from a tellurium-containing layer by an intervening germanium layer, and the multilayer film stack comprises at least two intervening germanium layers. The multilayer film stack can be formed by vapor deposition techniques such as chemical vapor deposition or atomic layer deposition. The annealable multilayer film stack can be formed in high aspect ratio vias to form phase change memory devices of superior character with respect to the stoichiometric and morphological characteristics of the GST product material.
    Type: Application
    Filed: June 8, 2009
    Publication date: July 28, 2011
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Jun-Fei Zheng, Jeffrey F. Roeder, Philip S.H. Chen
  • Patent number: 7972421
    Abstract: A fluid storage and dispensing apparatus including a fluid storage and dispensing vessel having a rectangular parallelepiped shape, and an integrated gas cabinet assembly including such fluid storage and dispensing apparatus and/or a point-of-use ventilation gas scrubber in the vented gas cabinet. By the use of physical adsorbent and chemical sorbent media, the gas cabinet can be enhanced in safety of operation, e.g., where the process gas supplied from the gas cabinet is of a toxic or otherwise hazardous character.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: July 5, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Dennis Brestovansky, Michael J. Wodjenski, Jose I. Arno, J. Donald Carruthers, Phillip A. Moroco, Judith A. Moroco, legal representative
  • Publication number: 20110159671
    Abstract: An isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio greater than a natural abundance concentration or ratio thereof. The compound may have a chemical formula of B2F4. Synthesis methods for such compounds, and ion implantation methods using such compounds, are described, as well as storage and dispensing vessels in which the isotopically-enriched, boron-containing compound is advantageously contained for subsequent dispensing use.
    Type: Application
    Filed: March 15, 2011
    Publication date: June 30, 2011
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Robert KAIM, Joseph D. Sweeney, Oleg Byl, Sharad N. Yedave, Edward E. Jones, Peng Zou, Ying Tang, Barry Lewis Chambers, Richard S. Ray
  • Patent number: 7966879
    Abstract: A monitoring system (100) for monitoring fluid in a fluid supply vessel (22, 24, 26, 28, 108) during operation including dispensing of fluid from the fluid supply vessel. The monitoring system includes (i) one or more sensors (114, 126) for monitoring a characteristic of the fluid supply vessel or the fluid dispensed therefrom, (ii) a data acquisition module (40, 132, 146) operatively coupled to the one or more sensors to receive monitoring data therefrom and responsively generate an output correlative to the characteristic monitored by the one or more sensors, and (iii) a processor (50, 150) and display (52, 150) operatively coupled with the data acquisition module and arranged to process the output from the data acquisition module and responsively output a graphical representation of fluid in the fluid supply vessel, billing documents, usage reports, and/or resupply requests.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: June 28, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: James Dietz, Steven E. Bishop, James V. McManus, Steven M. Lurcott, Michael J. Wodjenski, Robert Kaim, Frank Dimeo, Jr.
  • Patent number: 7964746
    Abstract: Copper precursors useful for depositing copper or copper-containing films on substrates, e.g., microelectronic device substrates or other surfaces. The precursors includes copper compounds of various classes, including copper borohydrides, copper compounds with cyclopentadienyl-type ligands, copper compounds with cyclopentadienyl-type and isocyanide ligands, and stabilized copper hydrides. The precursors can be utilized in solid or liquid forms that are volatilized to form precursor vapor for contacting with the substrate, to form deposited copper by techniques such as chemical vapor deposition (CVD), atomic layer deposition (ALD) or rapid vapor deposition (digital CVD).
    Type: Grant
    Filed: March 30, 2008
    Date of Patent: June 21, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Tianniu Chen, Chongying Xu, Thomas H. Baum, Bryan C. Hendrix, Jeffrey F. Roeder, Juan E. Dominguez, Adrien R. Lavoie, Harsono S. Simka
  • Publication number: 20110140181
    Abstract: Methods for removing a masking material, for example, a photoresist, and electronic devices formed by removing a masking material are presented. For example, a method for removing a masking material includes contacting the masking material with a solution comprising cerium. The cerium may be comprised in a salt. The salt may be cerium ammonium nitrate.
    Type: Application
    Filed: December 11, 2009
    Publication date: June 16, 2011
    Applicants: International Business Machines Corporation, Advanced Technology Materials, Inc.
    Inventors: Ali Afzali-Ardakani, Emanuel Israel Cooper, Mahmoud Khojasteh, Ronald W. Nunes, George Gabriel Totir
  • Patent number: 7960328
    Abstract: A removal composition and process for removing low-k dielectric material, etch stop material, and/or metal stack material from a rejected microelectronic device structure having same thereon. The removal composition includes hydrofluoric acid. The composition achieves at least partial removal of the material(s) from the surface of the microelectronic device structure having same thereon, for recycling and/or reuse of said structure, without damage to the underlying polysilicon or bare silicon layer employed in the semiconductor architecture.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: June 14, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Pamela M. Visintin, Ping Jiang, Michael B. Korzenski, Mackenzie King
  • Patent number: 7955797
    Abstract: A monitoring system for monitoring fluid in a fluid supply vessel during operation including dispensing of fluid from the fluid supply vessel. The monitoring system includes (i) one or more sensors for monitoring a characteristic of the fluid supply vessel or the fluid dispensed therefrom, (ii) a data acquisition module operatively coupled to the one or more sensors to receive monitoring data therefrom and responsively generate an output correlative to the characteristic monitored by the one or more sensors, and (iii) a processor and display operatively coupled with the data acquisition module and arranged to process the output from the data acquisition module and responsively output a graphical representation of fluid in the fluid supply vessel.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: June 7, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: James V. McManus, James A. Dietz, Steven M. Lurcott