Abstract: Tantalum precursors useful in depositing tantalum nitride or tantalum oxides materials on substrates, by processes such as chemical vapor deposition and atomic layer deposition. The precursors are useful in forming tantalum-based diffusion barrier layers on microelectronic device structures featuring copper metallization and/or ferroelectric thin films.
Type:
Grant
Filed:
May 12, 2008
Date of Patent:
May 4, 2010
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Tianniu Chen, Chongying Xu, Thomas H. Baum
Abstract: A process system adapted for processing of or with a material therein. The process system includes: a sampling region for the material; an infrared photometric monitor constructed and arranged to transmit infrared radiation through the sampling region and to responsively generate an output signal correlative of the material in the sampling region, based on its interaction with the infrared radiation; and process control means arranged to receive the output of the infrared photometric monitor and to responsively control one or more process conditions in and/or affecting the process system.
Abstract: A novel lead zirconium titanate (PZT) material having unique properties and application for PZT thin film capacitors and ferroelectric capacitor structures, e.g., FeRAMs, employing such thin film material. The PZT material is scalable, being dimensionally scalable, pulse length scalable and/or E-field scalable in character, and is useful for ferroelectric capacitors over a wide range of thicknesses, e.g., from about 20 nanometers to about 150 nanometers, and a range of lateral dimensions extending to as low as 0.15 ?m. Corresponding capacitor areas (i.e., lateral scaling) in a preferred embodiment are in the range of from about 104 to about 10?2 ?m2. The scalable PZT material of the invention may be formed by liquid delivery MOCVD, without PZT film modification techniques such as acceptor doping or use of film modifiers (e.g., Nb, Ta, La, Sr, Ca and the like).
Type:
Grant
Filed:
October 26, 2007
Date of Patent:
April 27, 2010
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Peter C. Van Buskirk, Jeffrey F. Roeder, Steven M. Bilodeau, Michael W. Russell, Stephen T. Johnston, Daniel J. Vestyck, Thomas H. Baum
Abstract: A secure reader system (SRS) for containers housing material to be employed in an application. A container is provided having an information storing mechanism. A connector of the SRS having a reader is provided to physically couple to the container for periodically reading information there from. The connector is configured to physically couple to the container and may draw material from the container simultaneous with the reading.
Type:
Grant
Filed:
December 19, 2003
Date of Patent:
April 20, 2010
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Kevin T. O'Dougherty, Robert E. Andrews, Tripunithura V. Jayaraman, Joseph P. Menning, Christopher A. Baye-Wallace
Abstract: A gas cabinet including an enclosure containing at least one gas supply vessel and flow circuitry coupled to the gas supply vessel(s). The flow circuitry is constructed and arranged to flow dispensed gas from an on-stream gas supply vessel to multiple sticks of the flow circuitry, with each of the multiple sticks being joined in gas flow communication to a respective gas-utilizing process unit. The flow circuitry is valved to enable sections of the flow circuitry associated with respective ones of the multiple sticks to be isolated from other sections of the flow circuitry, so that process gas can be flowed to one or more of the sticks, while other sticks are being evacuated and purged, or otherwise are closed to dispensed gas flow therethrough.
Abstract: An aqueous removal composition and process for removing heater material, including TiSiN, from a microelectronic device having said material thereon. The aqueous removal composition includes at least one fluoride source, at least one passivating agent, and at least one oxidizing agent. The composition selectively removes TiSiN relative to oxides and nitrides that are adjacently present.
Type:
Application
Filed:
February 6, 2008
Publication date:
March 18, 2010
Applicant:
Advanced Technology Materials, Inc
Inventors:
Elizabeth Walker, Emanuel I. Cooper, Jun Liu, Bernhard D. Bernhard
Abstract: Barium, strontium, tantalum and lanthanum precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of titanate thin films. The precursors have the formula M(Cp)2, wherein M is strontium, barium, tantalum or lanthanum, and Cp is cyclopentadienyl, of the formula wherein each of R1-R5 is the same as or different from one another, with each being independently selected from among hydrogen, C1-C12 alkyl, C1-C12 amino, C6-C10 aryl, C1-C12 alkoxy, C3-C6 alkylsilyl, C2-C12 alkenyl, R1R2R3NNR3, wherein R1, R2 and R3 may be the same as or different from one another and each is independently selected from hydrogen and C1-C6 alkyl, and pendant ligands including functional group(s) providing further coordination to the metal center M. The precursors of the above formula are useful to achieve uniform coating of high dielectric constant materials in the manufacture of flash memory and other microelectronic devices.
Type:
Application
Filed:
November 16, 2009
Publication date:
March 11, 2010
Applicant:
Advanced Technology Materials, Inc.
Inventors:
Chongying Xu, Tianniu Chen, Thomas M. Cameron, Jeffrey F. Roeder, Thomas H. Baum
Abstract: The present invention is a system for handling liquid and a method for the same. The system has a container capable of holding a liquid. An electronic storage device is coupled with the container for electronically storing information relating to the liquid stored in the container. The system also has an antenna, for storing information to and reading information from the electronic storage device. Finally, the system has a microprocessor-based controller, coupled with the antenna, for controlling processing of the liquid based on information read from the electronic storage device by the antenna.
Abstract: A semiconductor wafer cleaning formulation, including 1-21% wt. fluoride source, 20-55% wt. organic amine(s), 0.5-40% wt. nitrogenous component, e.g., a nitrogen-containing carboxylic acid or an imine, 23-50% wt. water, and 0-21% wt. metal chelating agent(s). The formulations are useful to remove residue from wafers following a resist plasma ashing step, such as inorganic residue from semiconductor wafers containing delicate copper interconnecting structures.
Type:
Grant
Filed:
January 24, 2005
Date of Patent:
February 16, 2010
Assignee:
Advanced Technology Materials, Inc.
Inventors:
William A. Wojtczak, Ma. Fatima Seijo, David Bernhard, Long Nguyen
Abstract: A system and method for controlling electrical heating of an element to maintain a constant electrical resistance, by adjusting electrical power supplied to such element according to an adaptive feedback control algorithm, in which all the parameters are (1) arbitrarily selected; (2) pre-determined by the physical properties of the controlled element; or (3) measured in real time. Unlike the conventional proportion-integral-derivative (PID) control mechanism, the system and method of the present invention do not require re-tuning of proportionality constants when used in connection with a different controlled element or under different operating conditions, and are therefore adaptive to changes in the controlled element and the operating conditions.
Type:
Grant
Filed:
May 24, 2006
Date of Patent:
February 2, 2010
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Ing-Shin Chen, Jeffrey W. Neuner, Richard Kramer
Abstract: Barium, strontium, tantalum and lanthanum precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of titanate thin films. The precursors have the formula M(Cp)2, wherein M is strontium, barium, tantalum or lanthanum, and Cp is cyclopentadienyl, of the formula (I), wherein each of R1-R5 is the same as or different from one another, with each being independently selected from among hydrogen, C1-C12 alkyl, C1-C12 amino, C6-C10 aryl, C1-C12 alkoxy, C3-C6 alkylsilyl, C2-C12 alkenyl, R1R2R3NNR3, wherein R1, R2 and R3 may be the same as or different from one another and each is independently selected from hydrogen and C1-C6 alkyl, and pendant ligands including functional group(s) providing further coordination to the metal center M. The precursors of the above formula are useful to achieve uniform coating of high dielectric constant materials in the manufacture of flash memory and other microelectronic devices.
Type:
Grant
Filed:
March 12, 2007
Date of Patent:
December 29, 2009
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Chongying Xu, Tianniu Chen, Thomas M. Cameron, Jeffrey F. Roeder, Thomas H. Baum
Abstract: Apparatus and method for dispensing a gas using a gas source coupled in selective flow relationship with a gas manifold. The gas manifold includes flow circuitry for discharging gas to a gas-using zone, and the gas source includes a pressure-regulated gas source vessel containing the gas at superatmospheric pressure. The pressure-regulated gas source vessel can be arranged with a pressure regulator at or within the vessel and a flow control valve coupled in flow relationship to the vessel, so that gas dispensed from the vessel flows through the regulator prior to flow through the flow control valve, and into the gas manifold. The apparatus and method permit an enhancement of the safety of storage and dispensing of toxic or otherwise hazardous gases used in semiconductor processes.
Type:
Grant
Filed:
February 23, 2006
Date of Patent:
November 10, 2009
Assignee:
Advanced Technology Materials, Inc.
Inventors:
W. Karl Olander, Matthew B. Donatucci, Luping Wang, Michael J. Wodjenski
Abstract: A method of forming an iridium-containing film on a substrate, from an iridium-containing precursor thereof which is decomposable to deposit iridium on the substrate, by decomposing the precursor and depositing iridium on the substrate in an oxidizing ambient environment which may for example contain an oxidizing gas such as oxygen, ozone, air, and nitrogen oxide. Useful precursors include Lewis base stabilized Ir(I) ?-diketonates and Lewis base stabilized Ir(I) ?-ketoiminates. The iridium deposited on the substrate may then be etched for patterning an electrode, followed by depositing on the electrode a dielectric or ferroelectric material, for fabrication of thin film capacitor semiconductor devices such as DRAMs, FRAMs, hybrid systems, smart cards and communication systems.
Abstract: A semiconductor wafer cleaning formulation, including 1-35% wt. fluoride source, 20-60% wt. organic amine(s), 0.1-40% wt. nitrogenous component, e.g., a nitrogen-containing carboxylic acid or an imine, 20-50% wt. water, and 0-21% wt. metal chelating agent(s). The formulations are useful to remove residue from wafers following a resist plasma ashing step, such as inorganic residue from semiconductor wafers containing delicate copper interconnecting structures.
Type:
Grant
Filed:
May 24, 2005
Date of Patent:
October 20, 2009
Assignee:
Advanced Technology Materials Inc.
Inventors:
William A. Wojtczak, Ma. Fatima Seijo, David Bernhard, Long Nguyen
Abstract: Silicon precursors for forming silicon-containing films in the manufacture of semiconductor devices, such as films including silicon carbonitride, silicon oxycarbonitride, and silicon nitride (Si3N4), and a method of depositing the silicon precursors on substrates using low temperature (e.g., <550° C.) chemical vapor deposition processes, for fabrication of ULSI devices and device structures.
Type:
Grant
Filed:
June 17, 2004
Date of Patent:
October 13, 2009
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Ziyun Wang, Chongying Xu, Bryan Hendrix, Jeffrey Roeder, Tianniu Chen, Thomas H. Baum
Abstract: Chemical mechanical polishing (CMP) compositions and single CMP platen process for the removal of copper and barrier layer material from a microelectronic device substrate having same thereon. The process includes the in situ transformation of a Step I slurry formulation, which is used to selectively remove and planarize copper, into a Step II slurry formulation, which is used to selectively remove barrier layer material, on a single CMP platen pad.
Type:
Application
Filed:
June 6, 2006
Publication date:
August 27, 2009
Applicant:
Advanced Technology Materials Inc.
Inventors:
Karl E. Boggs, Michael S. Darsillo, Peter Wrschka, James Welch, Jeffrey Giles, Michele Stawasz
Abstract: This invention relates to silicon precursor compositions for forming silicon-containing films by low temperature (e.g., <550° C.) chemical vapor deposition processes for fabrication of ULSI devices and device structures. Such silicon precursor compositions comprise at least a silane or disilane derivative that is substituted with at least one alkylhydrazine functional groups and is free of halogen substitutes.
Type:
Grant
Filed:
October 10, 2003
Date of Patent:
August 25, 2009
Assignee:
Advanced Technology Materials, Inc.
Inventors:
Ziyun Wang, Chongying Xu, Thomas H. Baum
Abstract: A method and composition for removing hardened photoresist, post-etch photoresist, and/or bottom anti-reflective coating from a microelectronic device is described. The composition may include a dense fluid, e.g., a supercritical fluid, and a dense fluid concentrate including a co-solvent, optionally a fluoride source, and optionally an acid. The dense fluid compositions substantially remove the contaminating residue and/or layers from the microelectronic device prior to subsequent processing, thus improving the morphology, performance, reliability and yield of the microelectronic device.
Type:
Application
Filed:
June 16, 2006
Publication date:
July 30, 2009
Applicant:
Advanced Technology Materials, Inc.
Inventors:
Michael B. Korzenski, Pamela M. Visintin, Thomas H. Baum, David W. Minsek, Chongying Xu
Abstract: A fluid storage and dispensing apparatus including a fluid storage and dispensing vessel having a rectangular parallelepiped shape, and an integrated gas cabinet assembly including such fluid storage and dispensing apparatus and/or a point-of-use ventilation gas scrubber in the vented gas cabinet. By the use of physical adsorbent and chemical sorbent media, the gas cabinet can be enhanced in safety of operation, e.g., where the process gas supplied from the gas cabinet is of a toxic or otherwise hazardous character.
Type:
Application
Filed:
March 10, 2009
Publication date:
July 9, 2009
Applicant:
Advanced Technology Materials, Inc.
Inventors:
Dennis Brestovansky, Michael J. Wodjenski, Jose I. Arno, J. Donald Carruthers, Philip A. Moroco, Judith A. Moroco
Abstract: A method and composition for removing ion-implanted photoresist from semiconductor substrates having such photoresist is described. The removal composition contains supercritical CO2 (SCCO2), a co-solvent and a reducing agent for use in removing ion-implanted photoresist. Such removal composition overcomes the intrinsic deficiency of SCCO2 as a removal reagent, viz., the non-polar character of SCCO2 and its associated inability to solubilize species such as inorganic salts and polar organic compounds that are present in the photoresist and that must be removed from the semiconductor substrate for efficient cleaning.