Patents Assigned to AGC Flat Glass North America, Inc.
  • Patent number: 8931821
    Abstract: An adhesively bonded window and hardware assembly includes a window member (12) presenting a surface (12a), a hardware member (14) having a flange (14a) and a projecting portion (14b) contiguous with and projecting from the flange, an adhesive member (18) disposed between the flange and the surface of the window member and adhesively bonding the hardware member (14) to the window member (12), and a sealing member (20) that envelopes part of the flange, fully surrounds the adhesive member, and bonds to and seals against the surface of the window member. The sealing member (20) serves to protect the adhesive member (18) from heat and humidity in the surrounding environment. The sealing member (20) can comprise an overmolded member formed of a polymer material.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: January 13, 2015
    Assignees: AGC Automotive Americas R&D, Inc., AGC Flat Glass North America, Inc.
    Inventors: Mark S. Ackerman, Daniel Bennett
  • Publication number: 20150002021
    Abstract: The present invention provides novel plasma sources useful in the thin film coating arts and methods of using the same. More specifically, the present invention provides novel linear and two dimensional plasma sources that produce linear and two dimensional plasmas, respectively, that are useful for plasma-enhanced chemical vapor deposition. The present invention also provides methods of making thin film coatings and methods of increasing the coating efficiencies of such methods.
    Type: Application
    Filed: September 15, 2014
    Publication date: January 1, 2015
    Applicants: AGC Flat Glass North America, Inc., Asahi Glass Co., Ltd., AGC Glass Europe S.A.
    Inventor: Peter MASCHWITZ
  • Publication number: 20150004330
    Abstract: The present invention provides novel plasma sources useful in the thin film coating arts and methods of using the same. More specifically, the present invention provides novel linear and two dimensional plasma sources that produce linear and two dimensional plasmas, respectively, that are useful for plasma-enhanced chemical vapor deposition. The present invention also provides methods of making thin film coatings and methods of increasing the coating efficiencies of such methods.
    Type: Application
    Filed: September 15, 2014
    Publication date: January 1, 2015
    Applicants: AGC Flat Glass North America, Inc., Asahi Glass Co., Ltd., AGC Glass Europe S.A.
    Inventor: Peter Maschwitz
  • Patent number: 8800222
    Abstract: A window assembly includes a transparent pane and an encapsulant bonded to the transparent pane, wherein the encapsulant is a copolymer of at least one amorphous thermoplastic polymer and at least one crystalline thermoplastic polymer, wherein the at least one amorphous thermoplastic polymer is at least one thermoplastic polyester, at least one thermoplastic polyether, or a copolymer of at least one thermoplastic polyester and at least one thermoplastic polyether. The at least one crystalline thermoplastic polymer may be a renewably-sourced thermoplastic polymer, wherein the total weight of the renewably-sourced thermoplastic polymer is at most 60 percent of the total weight of the copolymer.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: August 12, 2014
    Assignees: AGC Automotive Americas R&D, Inc., AGC Flat Glass North America, Inc.
    Inventor: Daniel Bennett
  • Publication number: 20140216343
    Abstract: The present invention provides novel plasma sources useful in the thin film coating arts and methods of using the same. More specifically, the present invention provides novel linear and two dimensional plasma sources that produce linear and two dimensional plasmas, respectively, that are useful for plasma-enhanced chemical vapor deposition. The present invention also provides methods of making thin film coatings and methods of increasing the coating efficiencies of such methods.
    Type: Application
    Filed: January 6, 2014
    Publication date: August 7, 2014
    Applicants: AGC Flat Glass North America, Inc., AGC Glass Europe, Asahi Glass Co., Ltd.
    Inventor: Peter MASCHWITZ
  • Publication number: 20140220361
    Abstract: The present invention provides novel plasma sources useful in the thin film coating arts and methods of using the same. More specifically, the present invention provides novel linear and two dimensional plasma sources that produce linear and two dimensional plasmas, respectively, that are useful for plasma-enhanced chemical vapor deposition. The present invention also provides methods of making thin film coatings and methods of increasing the coating efficiencies of such methods.
    Type: Application
    Filed: January 6, 2014
    Publication date: August 7, 2014
    Applicants: AGC Flat Glass North America, Inc., AGC Glass Europe, Asahi Glass Co., Ltd.
    Inventor: Peter MASCHWITZ
  • Publication number: 20140182239
    Abstract: A window assembly includes a transparent pane and an encapsulant bonded to the transparent pane, wherein the encapsulant is a copolymer of at least one amorphous thermoplastic polymer and at least one crystalline thermoplastic polymer, wherein the at least one amorphous thermoplastic polymer is at least one thermoplastic polyester, at least one thermoplastic polyether, or a copolymer of at least one thermoplastic polyester and at least one thermoplastic polyether. The at least one crystalline thermoplastic polymer may be a renewably-sourced thermoplastic polymer, wherein the total weight of the renewably-sourced thermoplastic polymer is at most 60 percent of the total weight of the copolymer.
    Type: Application
    Filed: December 27, 2012
    Publication date: July 3, 2014
    Applicants: AGC Flat Glass North America, Inc., AGC Automotive Americas R&D, Inc.
    Inventor: Daniel Bennett
  • Patent number: 8752716
    Abstract: The present invention is directed to an export rack for shipping sheet-like articles. More specifically, the present invention is directed to an export rack that includes at least one support, a removable gate and at least one top restraint. The removable gate includes at least one wedge that is configured to secure sheet-like articles loaded in the export rack.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: June 17, 2014
    Assignee: AGC Flat Glass North America, Inc.
    Inventors: Steven D. Gibson, Dennis Murphy
  • Patent number: 8652586
    Abstract: The present invention provides novel plasma sources useful in the thin film coating arts and methods of using the same. More specifically, the present invention provides novel linear and two dimensional plasma sources that produce linear and two dimensional plasmas, respectively, that are useful for plasma-enhanced chemical vapor deposition. The present invention also provides methods of making thin film coatings and methods of increasing the coating efficiencies of such methods.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: February 18, 2014
    Assignees: AGC Flat Glass North America, Inc., Asahi Glass Co., Ltd., AGC Glass Europe
    Inventor: Peter Maschwitz
  • Publication number: 20140029870
    Abstract: The present invention is directed to an apparatus which can acquire, readout and perceive a scene based on the insertion, or embedding of photosensitive elements into or on a transparent or semi-transparent substrate such as glass or plastic. The substrate itself may act as the optical device which deflects the photons of an incident image into the photosensitive elements. A digital neural memory can be trained to recognize patterns in the incident photons. The photosensitive elements and digital neural memory elements may be arranged with light elements controlled in accordance with the patterns detected. In one application, intelligent lighting units provide light while monitoring surroundings and/or adjusting light according to such surroundings. In another application, intelligent displays display images and/or video while monitoring surroundings and/or adjusting the displayed images and/or video in accordance with such surroundings.
    Type: Application
    Filed: July 2, 2013
    Publication date: January 30, 2014
    Applicants: Norlitech, LLC, AGC Flat Glass North America, Inc.
    Inventors: Guy PAILLET, Anne MENENDEZ
  • Patent number: 8613179
    Abstract: The energy-free refrigeration door of the present application provides a way to control condensation when the door of a refrigeration unit is opened by providing thermal insulation to the door with glass panels which have a low emissivity coating. The door includes a door frame housing and an insulating glass unit comprising inner, middle and outer sheets of glass. A first sealant assembly disposed around the periphery of the inner and middle sheets of glass forms a first chamber between the inner and middle sheets of glass. A second sealant assembly disposed around the periphery of the middle and outer sheets of glass forms a second chamber between the middle and outer sheets of glass. A gas, such as krypton, air, or argon is held in the first and second chambers. The outer sheet of glass and inner sheet of glass each have an unexposed surface that faces the middle sheet of glass.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: December 24, 2013
    Assignee: AGC Flat Glass North America, Inc.
    Inventor: Christopher R. Cording
  • Patent number: 8512883
    Abstract: A low-emissivity multilayer coating includes, in order outward from the substrate, a first layer including a layer containing titanium oxide, a layer containing silicon nitride, or a sublayer layer containing titanium oxide in combination with a sublayer containing silicon 5 nitride, a second layer including Ag, a third layer including at least one layer selected from titanium oxide layers and silicon nitride layers, a fourth layer including Ag, and a fifth layer including silicon nitride, where the color of the coatings can be varied over a wide range by controlling the thicknesses of the layers of titanium oxide, silicon nitride and Ag.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: August 20, 2013
    Assignee: AGC Flat Glass North America, Inc.
    Inventors: Darin Glenn, Herb Johnson, Rand Dannenberg, Peter A. Sieck, Joe Countrywood
  • Patent number: 8478081
    Abstract: The present invention is directed to an apparatus which can acquire, readout and perceive a scene based on the insertion, or embedding of photosensitive elements into or on a transparent or semi-transparent substrate such as glass or plastic. The substrate itself may act as the optical device which deflects the photons of an incident image into the photosensitive elements. A digital neural memory can be trained to recognize patterns in the incident photons. The photosensitive elements and digital neural memory elements may be arranged with light elements controlled in accordance with the patterns detected. In one application, intelligent lighting units provide light while monitoring surroundings and/or adjusting light according to such surroundings. In another application, intelligent displays display images and/or video while monitoring surroundings and/or adjusting the displayed images and/or video in accordance with such surroundings.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: July 2, 2013
    Assignees: AGC Flat Glass North America, Inc., Norlitech, LLC
    Inventors: Guy Paillet, Anne Menendez
  • Publication number: 20130163087
    Abstract: The invention relates to a coated glass substrate, especially a glass substrate comprising an anti-reflective layer (AR) with improved opto-energetic performances and a good mechanical and chemical durability. The glass substrate according to the invention comprises a glass sheet provided with a porous AR layer comprising a majority of silicon oxide in the form of (i) a sol-gel type matrix and (ii) particles. Advantageously, the AR layer also comprises a quantity of aluminium oxide, expressed in the form of Al2O3, that is more than or equal to 2 weight per cent and less than or equal to 5 weight per cent. Said layer also comprises at least 55 weight per cent of particles and a maximum of 80 weight per cent of particles in relation to the total weight of silicon oxide.
    Type: Application
    Filed: August 31, 2011
    Publication date: June 27, 2013
    Applicants: AGC Glass Europe, AGC Flat Glass North America, Inc., Asahi Glass Company
    Inventors: Francois Lecolley, Jean-Francois Oudard
  • Publication number: 20120321867
    Abstract: A low-emissivity multilayer coating includes, in order outward from the substrate, a first layer including a layer containing titanium oxide, a layer containing silicon nitride, or a sublayer layer containing titanium oxide in combination with a sublayer containing silicon 5 nitride, a second layer including Ag, a third layer including at least one layer selected from titanium oxide layers and silicon nitride layers, a fourth layer including Ag, and a fifth layer including silicon nitride, where the color of the coatings can be varied over a wide range by controlling the thicknesses of the layers of titanium oxide, silicon nitride and Ag.
    Type: Application
    Filed: January 13, 2012
    Publication date: December 20, 2012
    Applicant: AGC Flat Glass North America, Inc.
    Inventors: Darin GLENN, Herb JOHNSON, Rand DANNENBERG, Peter A. SIECK, Joe COUNTRYWOOD
  • Patent number: 8281527
    Abstract: A spacer assembly is disclosed having a spacer with a cross-section varying in a repeating manner along a longitudinal axis and an adhesive sealant at least partially encapsulating the spacer. Also, a moisture vapor barrier may be provided as well as a desiccated topcoat.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: October 9, 2012
    Assignee: AGC Flat Glass North America, Inc.
    Inventors: James Lynn Baratuci, Patrick Anthony Drda, Steven Michael Milano, Theo J. van de Pol
  • Patent number: 8273595
    Abstract: The present invention provides for cost-efficient methods for on-line deposition of semi-conducting metallic layers. More specifically, the present invention provides on-line pyrolytic deposition methods for deposition of p-type, n-type and i-type semi-conducting metallic layers in the float glass production process. Furthermore, the present invention provides for on-line pyrolytic deposition methods for production of single-, double-, triple- and multi-junction p-(i-)n and n-(i-)p type semi-conducting metal layers. Such p-type, n-type and i-type semi-conducting metal layers are useful in the photovoltaic industry and attractive to manufacturers of photovoltaic modules as “value-added” products.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: September 25, 2012
    Assignees: AGC Flat Glass North America, Inc., Asahi Glass Co., Ltd.
    Inventors: Christopher R. Cording, Matthew Spencer, Kunio Masumo
  • Patent number: 8137742
    Abstract: A sub-stoichiometric oxide, nitride or oxynitride layer in an optical stack, alone or in direct contact with one or two stabilizing layers, stabilizes the optical properties of the stack. The stabilizing layer(s) can stabilize the chemistry and optical properties of the sub-stoichiometric layer during heating. The change in optical characteristics of the sub-stoichiometric layer upon heating can counter the change in optical characteristics of the rest of the optical stack.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: March 20, 2012
    Assignee: AGC Flat Glass North America, Inc.
    Inventor: Peter Maschwitz
  • Publication number: 20110293929
    Abstract: The present invention provides a scratch protecting layer comprising a metal, metal alloy, metal compound or an intermetallic layer deposited on an air contacting surface. The scratch protecting layer is typically from 1 to 3 nanometers thick and not optically absorbing after oxidation occurs. This layer is initially deposited in a primarily unoxidized or un-nitrided state. Full oxidation of the metal, metal alloy, metal compound or intermetallic layer occurs within several days after exposure to air. The scratch protection layer can be 2 to 5 nanometers thick if the layer is exposed to a plasma, electrical discharge or ion beam comprising a reactive gas such as oxygen or nitrogen.
    Type: Application
    Filed: August 10, 2011
    Publication date: December 1, 2011
    Applicant: AGC Flat Glass North America, Inc.
    Inventor: Peter Alan MASCHWITZ
  • Patent number: 7993744
    Abstract: A sub-stoichiometric oxide, nitride or oxynitride layer in an optical stack, alone or in direct contact with one or two stabilizing layers, stabilizes the optical properties of the stack. The stabilizing layer(s) can stabilize the chemistry and optical properties of the sub-stoichiometric layer during heating. The change in optical characteristics of the sub-stoichiometric layer upon heating can counter the change in optical characteristics of the rest of the optical stack.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: August 9, 2011
    Assignee: AGC Flat Glass North America, Inc.
    Inventor: Peter Maschwitz