Patents Assigned to Agilent Technologies, Inc.
  • Patent number: 9673032
    Abstract: A sample sprayer includes a first conduit for conducting a liquid sample, a second conduit surrounding the first conduit to define an annular passage for conducting a gas, a sprayer tip in which a fluid interaction region receives the liquid sample and the gas. The sprayer tip is configured to produce a sample spray by contact between the liquid sample and the gas in the fluid interaction region and emit the sample spray from the orifice. An adjustable positioning device is configured to translate the first conduit along the longitudinal axis in response to adjustment of the positioning device, wherein an axial position of the first conduit is adjustable relative to the orifice.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: June 6, 2017
    Assignee: Agilent Technologies Inc.
    Inventors: Arthur Schleifer, Nigel P. Gore
  • Patent number: 9664598
    Abstract: Microfluidic contaminant traps of certain representative embodiments illustratively comprise: an inlet configured to connect directly or indirectly to a sample inlet of a gas chromatography (GC) system; an outlet configured to connect directly to an inlet of a GC column or indirectly to the GC column via another fluidic component; an interlayer comprising a channel; an upper layer disposed over and bonded to the interlayer; and a coating disposed over the channel. The coating reduces interactions of analytes from a sample provided at the inlet of the microfluidic contaminant trap with the microfluidic contaminant trap.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: May 30, 2017
    Assignee: Agilent Technologies, Inc.
    Inventors: George P. Walsh, Rebecca A. Veeneman
  • Patent number: 9657339
    Abstract: A method for amplifying a target nucleic acid is disclosed, which includes: (a) fragmenting a nucleic acid sample to create a target fragment comprising a target nucleic acid and two probe-complementary portions; (b) contacting said fragmented nucleic acid sample with a probe comprising two target fragment-complementary portions complementary to the probe-complementary portions of the target fragment; (c) rendering the fragmented nucleic acid sample single-stranded; (d) allowing the probe-complementary portions to hybridise with the target-fragment complementary portions; (e) if the probe in step (b) is not immobilised, immobilising the probe-target fragment hybrid on a solid phase via immobilisation moiety; (f) separating non-immobilised nucleic acid fragments from the solid phase; (g) contacting the solid phase with a ligase to ligate ligatable 5? and 3? ends of the target fragment whereby the target fragment is circularized; and (h) amplifying said circularized target fragment.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: May 23, 2017
    Assignee: Agilent Technologies, Inc.
    Inventors: Fredrik Roos, Henrik Johansson, Magnus Isaksson, Mats Nilsson, Olle (Olof) Ericsson, Simon Fredriksson
  • Patent number: 9651426
    Abstract: A light source having first and second wire-grid polarizers and a laser that emits a beam of linearly polarized light that is characterized by a propagation direction is disclosed. The first wire-grid polarization filter is characterized by a first linear polarization pass direction and a first actuator for causing the first linear polarization pass direction to rotate relative to the beam of linearly polarized light. The second wire-grid polarization filter is characterized by a second linear polarization pass direction and a second actuator for causing the second linear polarization pass direction to rotate relative to the beam of linearly polarized light. A controller sets the first and second linear polarization pass directions to provide linearly polarized light having a specified polarization direction.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: May 16, 2017
    Assignee: Agilent Technologies, Inc.
    Inventors: Adam Kleczewski, Richard P Tella, Dower Cameron Bricker, Yang Han
  • Publication number: 20170131244
    Abstract: A secondary stage sample separation device for separating at least a portion of a fluidic sample includes a fluidic interface configured for forming a detachable fluidic coupling between a primary stage sample separation device and the secondary separation device so that the fluidic sample separated by the primary stage sample separation device is fluidically supplyable to the secondary stage sample separation device via the fluidic interface for further separation, wherein the secondary stage sample separation device is further configured for separating at least a portion of the supplied fluidic sample independent of a flow rate of the fluidic sample supplied from the primary stage sample separation device at the fluidic interface.
    Type: Application
    Filed: June 25, 2014
    Publication date: May 11, 2017
    Applicant: Agilent Technologies, Inc.
    Inventors: Klaus Witt, Stephan Buckenmaier, Konstantin Shoykhet
  • Patent number: 9644199
    Abstract: The present invention provides a simple and rapid method for preparing purified transposase complexes that are highly suited for fragmenting DNA. The method includes forming transposase complexes with oligonucleotide adapters in cell lysate, then purifying the complexes from the other substance in the cell lysate. Purification is accomplished using a specific binding pair, in which one member of the pair is bound to an oligonucleotide adapter of the complex and the other member of the pair is bound to a solid substrate. The bound complexes can be immediately used in DNA fragmentation reactions to produce solid substrate-bound DNA fragments, which can be used for any number of purposes, including as templates for amplification and sequencing.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: May 9, 2017
    Assignee: Agilent Technologies, Inc.
    Inventor: Alexander S Belyaev
  • Patent number: 9638676
    Abstract: A representative embodiment is directed to a fitting for fluidically coupling a GC column to another structure. The fitting comprises: a first end configured to receive a ferrule having a tubular element disposed therein, the tubular element being oriented in a first direction; and a second end fluidically connected to the first end and having an opening to provide a fluid from the tubular element in a second direction that is different from the first direction. The second end comprises a substantially planar portion, and the planar portion is configured to make a substantially gas impermeable seal with another element of a GC system.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: May 2, 2017
    Assignee: Agilent Technologies, Inc.
    Inventors: George P. Walsh, Wesley M. Norman, Jonathan Michael Frentzel, William H. Wilson
  • Patent number: 9631618
    Abstract: A device for determining a leakage of fluid in a piston pump, wherein the piston pump comprises a piston arranged in such a manner that it can reciprocate in a piston chamber for delivering fluid, wherein the device comprises a control unit for controlling the piston in such a manner that the piston executes two piston chamber evacuation processes with different evacuation times, in each case for at least partial evacuating of fluid located in the piston chamber, and a determination unit for determining the leakage based on a comparison of fluid quantities evacuated from the piston chamber in the two piston chamber evacuation processes.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: April 25, 2017
    Assignee: Agilent Technologies, Inc.
    Inventors: Konstantin Shoykhet, Klaus Witt
  • Patent number: 9627190
    Abstract: A time-of-flight mass spectrometer (TOF-MS) utilizes an ion dispersion device and a position-sensitive ion detector or an energy-sensitive ion detector to enable measurement of time of flight and kinetic energy of ions arriving at the detector. The measurements may be utilized to improve accuracy in calculating ion masses.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: April 18, 2017
    Assignee: Agilent Technologies, Inc.
    Inventors: Julia Zaks, Trygve Ristroph
  • Patent number: 9625695
    Abstract: An infrared microscope includes a sample stage configured to support a sample; an objective configured to focus radiation emanated from the sample to an intermediate image plane between an objective and an infrared detector; and a magnifying assembly including a first set of reflective elements provided in a fixed position and a second set of reflective elements.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: April 18, 2017
    Assignee: Agilent Technologies, Inc.
    Inventors: Yinsheng Sun, Mustafa Kansiz
  • Patent number: 9618487
    Abstract: Prefilled liquid cartridge for fluidically connecting to a sample separation device for separating of components of a fluidic sample by using liquid of the liquid cartridge, wherein the liquid cartridge comprises a liquid container which is prefilled with liquid and a liquid removal access provided at the liquid container, adapted to be fluidically coupled with at least one liquid conduit of the sample separation device by only inserting the liquid cartridge in a corresponding liquid cartridge accommodation of the sample separation device.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: April 11, 2017
    Assignee: Agilent Technology, Inc.
    Inventors: Manuela Senf, Daniela Loraing, Qi Siegmundt-Pan
  • Patent number: 9618485
    Abstract: In a high performance liquid chromatography system, wherein a mobile phase is driven through a stationary phase for separating compounds of a sample fluid comprised in the mobile phase, a flow rate of the mobile phase is controlled in dependence on a variation in a control value in the system.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: April 11, 2017
    Assignee: Agilent Technology, Inc.
    Inventor: Klaus Witt
  • Patent number: 9611852
    Abstract: The main sources of heat in a scroll pump are cooled efficiently by a single cooling fan so that noise and, in particular, fan-generated noise, can be kept low. The scroll pump includes a pump head assembly, a pump motor, a cooling fan that produces a cooling air flow in the pump, a cowling in which the pump head assembly, pump motor and cooling fan are housed and juxtaposed with one another in an axial direction of the pump, and a shroud disposed within the cowling and extending around the pump motor to define a tunnel with the motor and through which the air flow of the cooling fan is directed.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: April 4, 2017
    Assignee: Agilent Technology, Inc.
    Inventors: Ronald J. Forni, Scott Driscoll, George Galica
  • Patent number: 9610576
    Abstract: The invention provides novel ion-exchange media and related methods for their preparation and use. Ion-exchange stationary phases according to the invention are suitable for chromatographic separation of a variety of biomolecules. Distinguishing characteristics of ion-exchange media according to this invention includes, for example, their ability to separate variants of monoclonal antibodies via cation-exchange liquid chromatography using porous substrates with particle sizes <5 ?m. The ion-exchange stationary media include a hydrolytically stable layer, which inhibits surface degradation of the particles in 100% aqueous media. Another unique feature is low molecular weight building blocks used to functionalize the particles with ion-exchange groups.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: April 4, 2017
    Assignee: Agilent Technologies, Inc.
    Inventor: Andrei Bordunov
  • Patent number: 9605674
    Abstract: A vacuum scroll pump has a frame, a stationary plate scroll fixed to the frame, an orbiting plate scroll, an eccentric drive mechanism for driving the orbiting plate scroll, and counterbalancing features by which axial loads produced on the eccentric drive mechanism are offset. Scroll blades of the stationary and orbiting plate scrolls are nested to define pockets which constitute a compression stage between opposing front sides of plates of the stationary and orbiting plate scrolls. The counterbalancing features include an axial counterbalancing chamber defined at a back side of the plate of the orbiting plate scroll, i.e., opposite the side at which the compression stage is provided, and a mechanism by which an intermediate one of the pockets can be placed in communication with the counterbalancing chamber through the plate of the orbiting plate scroll.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: March 28, 2017
    Assignee: Agilent Technologies, Inc.
    Inventors: Ronald J. Forni, John Calhoun
  • Publication number: 20170082490
    Abstract: An imaging scanner and a method for using the same are disclosed. The scanner includes a variable attenuator adapted to receive a light beam generated by a MIR laser and that generates an attenuated light beam therefrom characterized by an attenuation level. The scanner includes an optical assembly that focuses the attenuated light beam to a point on a specimen. A light detector measures an intensity of light leaving the point on the specimen, the light detector being characterized by a detector dynamic range. A controller forms a plurality of MIR images from the intensity as a function of position on the specimen, each of the plurality of MIR images being formed with a different level of attenuation of the light beam. The controller combines the plurality of MIR images to generate a combined MIR image having a dynamic range greater than the detector dynamic range.
    Type: Application
    Filed: September 23, 2015
    Publication date: March 23, 2017
    Applicant: Agilent Technologies, Inc.
    Inventors: Charles Hoke, Christopher Ryan Moon, Andrew Ghetler, Yang Han
  • Publication number: 20170082538
    Abstract: A scanner and an attenuated total reflection (ATR) objective for use in such scanners are disclosed The ATR objective includes first and second optical elements and an input port. The input port receives an input collimated light beam that is focused to a point on a planar face of the first optical element by the second optical element such that substantially all of that portion is reflected by the planar face and no portion of the input beam strikes the planar face at an angle greater than the critical angle. The second optical element also generates an output collimated light beam from light reflected from the planar face that is characterized by a central ray that is coincident with the central ray of the input collimated light beam. A light beam converter receives the first collimated light beam and generates the input collimated light beam therefrom.
    Type: Application
    Filed: September 23, 2015
    Publication date: March 23, 2017
    Applicant: Agilent Technologies, Inc.
    Inventors: Charles Hoke, Christopher Ryan Moon, Andrew Ghetler, Yuri Beregovski, Richard P. Tella, Yang Han
  • Publication number: 20170085810
    Abstract: A scanner and method for using the same are disclosed. The scanner includes a stage, a MIR light source, an imaging system, and a controller. The stage is adapted to hold a specimen to be imaged and to move the specimen in a first direction and in a second direction that is orthogonal to the lateral direction. The imaging system forms an image plane of the specimen when the stage is positioned at a second direction distance, z, from a known point in the imaging system. The imaging system forms a plurality of different image planes of the specimen at the illumination wavelength. Each of the plurality of image planes is characterized by a different value of z, the controller determining a value of z for each of a plurality of points on the specimen at which the point on the specimen is in focus.
    Type: Application
    Filed: September 23, 2015
    Publication date: March 23, 2017
    Applicant: Agilent Technologies, Inc.
    Inventor: Christopher Ryan Moon
  • Patent number: 9589775
    Abstract: A mass spectrometry (MS) system may be cleaned by generating plasma and contacting an internal surface of the system to be cleaned with the plasma. The system may be switched between operating in an analytical mode and in a cleaning mode. In the analytical mode a sample is analyzed, and plasma may or may not be actively generated. In the cleaning mode the plasma is actively generated, and the sample may or may not be analyzed.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: March 7, 2017
    Assignee: Agilent Technologies, Inc.
    Inventors: Gershon Perelman, Mark Denning, Mehrnoosh Vahidpour, Guthrie Partridge
  • Patent number: D785198
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: April 25, 2017
    Assignee: Agilent Technologies, Inc.
    Inventors: Gilbert Lemke, Thomas E. Price, Jonathan Michael Frentzel, Rafael Mulero