Patents Assigned to Agilent Technologies
  • Patent number: 11342169
    Abstract: In one embodiment, a power source for providing high-voltage radio-frequency (RF) energy to an instrument such as a mass spectrometer includes an RF power amplifier having an output, an oscillating RF signal generator configured to provide first and second RF signals respectively oscillating at first and second frequencies to the RF power amplifier, and a step-up circuit for magnifying the RF power amplifier output. The step-up circuit includes an LC resonator network tuned to the first and second frequencies, and an output for providing the magnified voltage to a rod assembly of the mass spectrometer.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: May 24, 2022
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventor: Michael Schoessow
  • Patent number: 11340191
    Abstract: A capillary electrophoresis system includes a capillary reservoir. The capillary reservoir includes a capillary tip flow chamber configured to receive respective capillary tips and to conduct fluid past the capillary tips, and an electrode flow chamber in which an electrode is disposed and configured to conduct fluid past the electrode, the electrode flow chamber being separate from and in fluid communication with the capillary tip flow chamber. An ultraviolet (UV) light absorbance-based multiplexed capillary electrophoresis system includes a first enclosure and a second enclosure. The first enclosure covers a UV light source, and includes a slit. The second enclosure covers the first enclosure, a collimating lens, and a capillary window.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: May 24, 2022
    Assignee: Agilent Technologies, Inc.
    Inventors: Michael Stebniski, Bruce R. Boeke, Martin Chris Foster, Scott Stueckradt, Thomas J. Kurt
  • Publication number: 20220128518
    Abstract: A jet injector for a GC that includes a body, a skirt extending away from the body; and a bore that extends through the skirt and the body to create an inlet and an outlet for the jet injector.
    Type: Application
    Filed: January 13, 2020
    Publication date: April 28, 2022
    Applicant: AGILENT TECHNOLOGIES Blvd.
    Inventors: Edward D. MROZ, Heng HE
  • Patent number: 11306309
    Abstract: Provided herein are methods for inducing CRISPR/Cas-based gene regulation (e.g., genome editing or gene expression) of a target nucleic acid (e.g., target DNA or target RNA) in a cell. The methods include using modified single guide RNAs (sgRNAs) that enhance gene regulation of the target nucleic acid in a primary cell for use in ex vivo therapy or in a cell in a subject for use in in vivo therapy. Additionally, provided herein are methods for preventing or treating a genetic disease in a subject by administering a sufficient amount of a modified sgRNA to correct a mutation in a target gene associated with the genetic disease.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: April 19, 2022
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Agilent Technologies
    Inventors: Matthew H. Porteus, Ayal Hendel, Joe Clark, Rasmus O. Bak, Daniel E. Ryan, Douglas J. Dellinger, Robert Kaiser, Joel Myerson
  • Patent number: 11300773
    Abstract: An apparatus and method for generating a mid-infrared region image of a specimen are disclosed. The apparatus includes a mid-infrared region laser that generates a first light beam, and a stage adapted to carry a specimen to be scanned. An optical assembly focuses the first light beam to a point on the specimen. A first light detector measures a first intensity of light leaving the point on the specimen. A stage actuator assembly causes the specimen to move relative to the point in two dimensions. A controller forms a mid-infrared region image from the first intensity. The image can be based on reflected or transmitted light. The maximum size of the imaged area is determined by a scanning assembly that moves in a first direction relative to the stage, the stage moving in a direction orthogonal to the first direction.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: April 12, 2022
    Assignee: Agilent Technologies, Inc.
    Inventors: Charles Hoke, Varun Raghunathan
  • Patent number: 11299483
    Abstract: Compounds and methods for purifying oligonucleotides such as RNA and DNA. A target oligonucleotide is reacted with an orthoester linker comprising an affinity tag to form an orthoester oligonucleotide-orthoester linker conjugate which is subjected to a purification technique to separate the target oligonucleotide from impurities such as truncated oligonucleotides. The orthoester linker can be then removed under mild conditions to generate the target oligonucleotide in high purity.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: April 12, 2022
    Assignee: Agilent Technologies, Inc.
    Inventors: Douglas J. Dellinger, Joel Myerson, Brian Smart
  • Publication number: 20220099518
    Abstract: A gas leak detector cartridge includes a cartridge housing that is removably installed in a handheld device. The cartridge housing includes a sensor that detects a presence of a contaminant in a sample gas and is connected to a printed circuit board. The cartridge housing also includes a pump positioned in a manifold and introduces a sample gas to the sensor. The sensor is at least partially inserted into the manifold that includes the pump.
    Type: Application
    Filed: September 28, 2020
    Publication date: March 31, 2022
    Applicant: Agilent Technologies, Inc.
    Inventors: Chin-Seong Khor, Jon-Wen Tan, Heng-Dar Ling
  • Patent number: 11287379
    Abstract: A system for detecting signal components of light induced by multiple excitation sources including: a flow channel including at least two spatially separated optical interrogation zones; a non-modulating excitation source that directs a light beam of a first wavelength at a near constant intensity onto a first of the optical interrogation zones; a modulating excitation source that directs a light beam of a second wavelength with an intensity modulated over time at a modulating frequency onto a second of the optical interrogation zones; a detector subsystem comprising a set of detectors configured to detect light emitted from particles flowing through the at least two optical interrogation zones and to convert the detected light into a total electrical signal; and a processor that determines signal components from the light detected from each of the optical interrogation zones.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: March 29, 2022
    Assignee: Agilent Technologies, Inc.
    Inventors: Nan Li, Jian Wu, Ye Chen, Tianxing Wang, Xiaobo Wang
  • Patent number: 11275062
    Abstract: An injector, for injecting a fluidic sample into a flow path between a fluid drive and a sample separation unit, includes a sample accommodation volume, a sample drive, and a fluidic valve switchable to selectively couple the volume with the flow path or decouple the volume from the flow path. In an injection switching state, the fluid drive, the separation unit and the sample drive are coupled by the valve so that fluid driven by the sample drive and flowing from the volume to the separation unit and further fluid driven by the fluid drive and flowing from the fluid drive to the separation unit are combined at a fluidic connection upstream of the separation unit. A control unit controls a pressure of the fluid and/or the further fluid during injecting.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: March 15, 2022
    Assignee: Agilent Technologies, Inc
    Inventors: Daniel Thielsch, Thomas Ortmann, Sam Wouters
  • Patent number: 11253859
    Abstract: A microfluidic apparatus for separating a droplet of an emulsion in a microfluidic environment is described. The microfluidic apparatus includes a flow cell comprising a first microfluidic channel configured for flowing a first fluid through the flow cell and a second microfluidic channel configured for flowing a stream of a second fluid through the flow cell. The microfluidic apparatus further comprises a first electrode positioned at the first microfluidic channel and a second electrode positioned at the second microfluidic channel on an opposite side of the interface with respect to the first electrode. The first electrode, the second electrode, and the first and second microfluidic channels are configured to generate a non-uniform electric field gradient in the microfluidic apparatus.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: February 22, 2022
    Assignee: Agilent Technologies, Inc.
    Inventors: Curt A. Flory, Dustin Chang
  • Patent number: 11255465
    Abstract: A microfluidic check valve includes an inlet bore, an internal chamber, an outlet bore, and a disk freely movable in the chamber between an open position and a closed position. At the open position, the disk permits fluid to flow from the inlet bore, through the chamber, and to the outlet bore. At the closed position, the disk prevents fluid from flowing in the reverse direction from the chamber into the inlet bore. The check valve may be positioned in-line with a fluid conduit, and/or incorporated with various fluidic devices such as, for example, capillary tubes, fittings, and chromatography columns. The check valve is capable of withstanding high fluid pressures, while featuring a small swept volume, such as a nano-scale volume. The check valve may be utilized, for example, to prevent fluid back flow and isolate pressure pulses in fluid flow systems.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: February 22, 2022
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventors: Ares Geovanos, Hongfeng Yin
  • Patent number: 11244818
    Abstract: A method for operating a data processing system to find peaks in a mass spectrum that includes an ordered set of measurements of the abundances of species as a function of the mass/charge ratio of the species is disclosed. The method includes selecting a candidate blob that has a plurality of blob peaks from the mass spectrum. The data processing system selects a candidate blob peak for characterization. The candidate blob peak is approximated by a first species peak using a species peak model having a plurality of parameters by fitting the species peak model to a portion of the blob that has values that are substantially free of contributions from other species peaks that overlap with the first species peak and that are not represented by the species peak model. The first species peak is then subtracted from the candidate blob.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: February 8, 2022
    Assignee: Agilent Technologies, Inc.
    Inventor: Daniel Y. Abramovitch
  • Patent number: 11243148
    Abstract: The present disclosure is directed to an improved method for distinguishing tissue from an embedding medium, such as paraffin in a formalin-fixed paraffin-embedded sample. The method involves the use of fluorescence of naturally-occurring species in tissue to determine the location of the tissue in the embedded sample. An embedded sample is generally excited by light of a selected wavelength, and the fluorescence emission at an emitted wavelength is used to locate the boundary or location of the tissue in the embedded sample.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: February 8, 2022
    Assignee: Agilent Technologies, Inc.
    Inventors: Kyle Schleifer, Kristin Briana Bernick, Adrienne Mccampbell, Nicholas M. Sampas, Victor Lim
  • Patent number: 11239068
    Abstract: Systems and methods for controlling mass filtering of polyatomic ions in an ion beam passing through an inductively coupled plasma mass spectrometer (ICP-MS). Polyatomic ion mass data representative of the exact mass of a polyatomic ion having a target isotope is determined. A control signal is generated based on the determined polyatomic ion mass data and output to an ICP-MS to filter based on mass the polyatomic ions in the ion beam traveling through the ICP-MS to an ion detector.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: February 1, 2022
    Assignee: Agilent Technologies, Inc.
    Inventors: Naoki Sugiyama, Amir Liba, Mark Lee Kelinske, Glenn David Woods
  • Patent number: 11226316
    Abstract: A method of manufacturing a component having a flow path, wherein the method includes forming a high pressure resistant casing with a cavity therein, inserting a body of bioinert material into the cavity to thereby form a composite block, and further processing the composite block for at least partially forming the flow path defined by the component.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: January 18, 2022
    Assignee: Agilent Technologies, Inc
    Inventor: Stefan Falk-Jordan
  • Patent number: 11217437
    Abstract: Electron capture dissociation (ECD) is performed by transmitting an electron beam through a cell along an electron beam axis, generating plasma in the cell by energizing a gas with the electron beam, and transmitting an ion beam through the interaction region along an ion beam axis to produce fragment ions. Generating the plasma forms an interaction region in the cell spaced from and not intersecting the electron beam, and including low-energy electrons effective for ECD. The ion beam axis may be at an angle to and offset from the ion beam axis, such that the electron beam does not intersect the ion beam.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: January 4, 2022
    Assignee: Agilent Technologies, Inc.
    Inventors: Kenneth R. Newton, Nigel P. Gore, Mark Denning
  • Patent number: 11213767
    Abstract: A fitting for providing a fluid connection between a capillary and a fluidic conduit of a fluidic component, the fitting comprising a male piece and a female piece for connection with the male piece, wherein the male piece comprises a housing with a capillary reception configured for receiving the capillary, wherein a part of the capillary being received in the capillary reception is circumferentially covered by a sleeve, an elastic biasing mechanism being arranged at least partially within the housing, being configured for biasing the capillary against the female piece and being supported by the sleeve, and a locking mechanism being arranged at least partially within the housing and being configured for locking the capillary to the fitting.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: January 4, 2022
    Assignee: Agilent Technologies, Inc.
    Inventors: Claus Lueth, Darijo Zeko
  • Patent number: 11209389
    Abstract: A method of handling a fluidic sample in a sample separation device includes at least partly immobilizing the fluidic sample by an immobilizing agent inhibiting spatial broadening of the fluidic sample, and subsequently at least partly releasing the fluidic sample from the immobilizing agent.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: December 28, 2021
    Assignee: Agilent Technologies, Inc.
    Inventor: Ludwig Gutzweiler
  • Publication number: 20210380421
    Abstract: There is disclosed a method of producing etched non-porous particles. The method includes, in some examples, coating a non-porous particle with a hydrophilic polymer and treating the coated particle with acid or base. Also provided is etched non-porous particles capable of separating a variety of analytes, including biomolecules.
    Type: Application
    Filed: April 19, 2021
    Publication date: December 9, 2021
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventor: Ta-Chen WEI
  • Patent number: D941488
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: January 18, 2022
    Assignee: Agilent Technologies, Inc.
    Inventors: Longbin Fang, Qiting Ye, Xin Yao, Zhi Tao, Jian Wu, Nan Li, Xiaobo Wang