Patents Assigned to Aixtron, SE
  • Publication number: 20150007771
    Abstract: A gas inlet member of a CVD reactor includes a gas inlet housing having a gas distribution volume supplied with a process gas by a feed line and a multiplicity of gas lines, each formed as a tube and engaging openings of a gas outlet plate arranged in front of an inlet housing wall, and through which the process gas enters a process chamber. A coolant chamber adjoins the gas inlet housing wall and a coolant cools the gas inlet housing wall and outlet ends of the gas lines that are in heat-conductive contact with the gas inlet housing wall. The gas outlet plate is thereby thermally decoupled from the gas inlet housing wall such that the gas outlet plate, which is acted on by radiation heat coming from the process chamber, heats up more intensely than the outlet ends which extend into the openings of the gas outlet plate.
    Type: Application
    Filed: July 5, 2012
    Publication date: January 8, 2015
    Applicant: AIXTRON SE
    Inventors: Hugo Silva, Nico Jouault, Victor Saywell, Fred Crawley, Martin Dauelsberg, Johannes Lindner
  • Patent number: 8846501
    Abstract: The invention relates to a method for equipping a process chamber in an apparatus for depositing at least one layer on a substrate held by a susceptor in the process chamber, process gases being introduced into the process chamber through a gas inlet element, in particular by means of a carrier gas, the process gases decomposing into decomposition products in the chamber, in particular on hot surfaces, the decomposition products comprising the components that form the layer. In order to improve the apparatus so that thick multi-layer structures can be deposited reproducibly in process steps that follow one another directly, it is proposed that a material is selected for the surface facing the process chamber at least of the wall of the process chamber that is opposite the susceptor, the optical reflectivity, optical absorptivity and optical transmissivity of which respectively correspond to those of the layer to be deposited during the layer growth.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: September 30, 2014
    Assignee: Aixtron SE
    Inventor: Gerhard Karl Strauch
  • Patent number: 8841221
    Abstract: The invention relates to a device for depositing semiconductor layers, comprising a process chamber (1) arranged substantially rotationally symmetrically about a center (11), a susceptor (2), a process chamber ceiling (3), a gas inlet element (4) having gas inlet chambers (8, 9, 10) that are arranged vertically on top of each other, and a heater (27) arranged below the susceptor (2), wherein the topmost (8) of the gas inlet chambers is directly adjacent to the process chamber ceiling (3) and is connected to a feed line (14) for feeding a hydride together with a carrier gas into the process chamber (1), wherein the lowest (10) of the gas inlet chambers is directly adjacent to the susceptor (2) and is connected to a feed line (16) for feeding a hydride together with a carrier gas into the process chamber (1), wherein at least one center gas inlet chamber (9) arranged between the lowest (10) and the topmost (8) gas inlet chamber is connected to a feed line (15) for feeding an organometallic compound into the pro
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: September 23, 2014
    Assignee: Aixtron SE
    Inventors: Daniel Brien, Oliver Schön
  • Publication number: 20140186527
    Abstract: The invention relates first to a device for processing a strip-type substrate (1), in particular by coating, in a processing chamber (2), using a processing roller (3) mounted to rotate about an axis of rotation (18) in the processing chamber (2), such that the substrate (1), which is unwound from a first coil (6) with which it is in contact in a helical pattern is processed continuously, wherein the processed, in particular coated, substrate (1) is wound onto a second coil (7), wherein a gas inlet/outlet device (8, 9, 10) is provided for generating a gas stream (11, 12) directed essentially in parallel to the axis of rotation (18). In addition, the invention relates to a method for coating a strip-type substrate (1) in a device.
    Type: Application
    Filed: November 26, 2013
    Publication date: July 3, 2014
    Applicant: AIXTRON SE
    Inventors: Kenneth B.K. Teo, Nalin Rupesinghe
  • Publication number: 20130040054
    Abstract: A device for treating a substrate (12) includes a conveying device (13) for loading and unloading substrates or masks (10, 10?, 10?, 10??) into and from a process chamber (1) through loading openings (6, 7). A shielding plate (11), used to shield the substrate (12) or the mask (10) from the influence of heat is moved between a shielding position and a storage position during the substrate treatment and, after the substrate (12) is treated, from the storage position back into the shielding position. In the storage position, the shielding plate (11) is situated inside a storage chamber (2, 3).
    Type: Application
    Filed: February 8, 2011
    Publication date: February 14, 2013
    Applicant: AIXTRON SE
    Inventors: Gerhard Karl Strauch, Walter Franken, Marcel Kollberg, Florenz Kittel, Markus Gersdorff, Johannes Käppeler
  • Patent number: 8349081
    Abstract: A gas distributor for a CVD or OVPD reactor comprises two or more gas volumes (1, 2) into each of which opens a feed pipe (3, 4) for a process gas, each gas volume (1, 2) being connected to a plurality of corresponding process gas outlets (6, 7) which open into the bottom (5) of the gas distributor. In order to increase the homogeneity of the gas composition, the two gas volumes (1, 2) comprise pre-chambers (10, 10?, 11) located in a first common plane (8) and a plurality of gas distribution chambers (12, 13) each associated with a gas volume are provided in a second plane (9?) adjacent to the bottom of the gas distributor. The pre-chambers (10, 10?, 11) and gas distribution chambers (12, 13) associated with each gas volume (1, 2) are connected with connection channels (14, 15).
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: January 8, 2013
    Assignee: Aixtron SE
    Inventors: Markus Reinhold, Peter Baumann, Gerhard Karl Strauch
  • Patent number: 8308969
    Abstract: A plasma system for substrate processing comprising, a conducting electrode (b, bb) on which one or more substrates (d) can be held; a second conducting electrode (a) placed adjacent but separated from the substrate holding electrode on the side away from the side where the substrates are held; and a gas mixture distribution shower head (e) placed away from the conducting electrode on the side where the substrates are held for supplying the gas mixture (f) needed for processing the substrates in a uniform manner; such that a plasma configuration initiated and established, between the conducting electrode holding the substrates and the second conducting electrode envelops the electrode holding the substrate, is kept away from the shower head activating and distributing the gas mixture through orifices (ee) in the shower head, thereby providing the advantages of improved uniformity, yield and reliability of the process.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: November 13, 2012
    Assignee: Aixtron, SE
    Inventors: Kenneth B. K. Teo, Nalin L. Rupesinghe
  • Publication number: 20120094474
    Abstract: The invention relates to a method for equipping a process chamber in an apparatus for depositing at least one layer on a substrate held by a susceptor in the process chamber, process gases being introduced into the process chamber through a gas inlet element, in particular by means of a carrier gas, the process gases decomposing into decomposition products in the chamber, in particular on hot surfaces, the decomposition products comprising the components that form the layer. In order to improve the apparatus so that thick multi-layer structures can be deposited reproducibly in process steps that follow one another directly, it is proposed that a material is selected for the surface facing the process chamber at least of the wall of the process chamber that is opposite the susceptor, the optical reflectivity, optical absorptivity and optical transmissivity of which respectively correspond to those of the layer to be deposited during the layer growth.
    Type: Application
    Filed: June 8, 2010
    Publication date: April 19, 2012
    Applicant: AIXTRON SE
    Inventor: Gerhard Karl Strauch