Abstract: A method for producing spheroidal graphite cast iron having a specific final composition includes: subjecting a molten iron to a spheroidization treatment using a spheroidizing agent of an Fe—Si—Mg—Ca-based alloy containing no rare earth element; conducting an inoculation treatment using a first Fe—Si-based inoculant; and conducting a pouring inoculation treatment with a given amount of a second Fe—Si-based inoculant containing 45-75% of Si, 1-3% of Ca, and 15 ppm or less of Ba.
Abstract: A vehicular disc brake rotor is provided with a cast-iron base, a nitrogen diffusion layer formed on the cast-iron base, a nitrogen compound layer formed on the nitrogen diffusion layer, and an iron oxide layer including Fe3O4 and formed on the nitrogen compound layer. In a burnish and a first re-burnish of a “Passenger car-Braking device-Dynamometer test procedures” (which is based on JASO C 406:2000), a change ratio of a frictional coefficient between the burnish and the first re-burnish is 10% or less.
Abstract: A friction material containing, as a binder, a lignin-phenol resin having a weight average molecular weight of 5,000 or less or a cardanol-modified lignin-phenol resin having a weight average molecular weight of 5,000 or less. The friction material is produced by a method including: reacting a lignin having a weight average molecular weight of 5,000 or less, a phenol, an aldehyde, and optionally a cardanol, in the presence of an acid catalyst.
Abstract: A process for producing spheroidal graphite cast iron includes a spheroidization treatment, an inoculant treatment and a pouring inoculation treatment. A molten iron is subjected to the spheroidization treatment using a spheroidizing agent of an Fe—Si—Mg—Ca-based alloy which contains a given amount of Ba and contains substantially no rare-earth element.
Abstract: A disk brake pad includes a lining and a back plate supporting the lining. A first side part of the back plate in the circumferential direction includes a guided portion configured to engage movably in the axial direction with a guiding portion of a pad support member. The guided portion is disposed at a position more inward in the radial direction than a line of action of a brake tangential force applied in braking, so as to support a brake tangential force applied toward a second side part of the back plate in the circumferential direction in braking. The back plate is configured to support a brake tangential force applied toward the first side part in braking at a portion thereof that exists more outward in the radial direction than the line of action of the brake tangential force.
Abstract: A drum brake apparatus includes first and second brake shoes, a wheel cylinder, an anchor portion, an adjuster, an expansion mechanism for expanding the first and second brake shoes, a switch lever mechanism rotatable by an action force of a given or higher value from the expansion mechanism, and a switch strut, following the rotation of the switch lever mechanism, for expanding the anchor-portion side adjoining ends of the first and second brake shoes.
Abstract: A linear actuation assembly comprising: (a) a differential assembly and (b) a pair of linear actuators in communication with the differential assembly; wherein the pair of linear actuators are movable along an axis so that during movement of each of the pair of linear actuators a pair of brake shoes are moved to create a brake force or moved to release a brake force, and wherein the differential assembly distributes power equally to each of the pair of linear actuators until resistance of one of the brake shoes increases then the differential assembly ceases to provide power to the brake shoe with increased resistance and distributes the power from the brake shoe with increased resistance to a brake shoe of lower resistance until a brake force is created.
Abstract: A friction material composition including a fiber base material, a friction modifier and a binder. A content of copper in the friction material composition is 0.5% by mass or less. The friction material composition includes a partially graphitized coke and muscovite. A friction material is formed by molding the friction material composition.
Abstract: A device comprising: a caliper comprising: one or more piston bores housing a piston; an outboard pad retainer; a bridge; and a shoulder; wherein the caliper is attached directly to a knuckle of an automobile via the shoulder.
Abstract: There is provided a drum brake type electric parking brake apparatus includes an electric actuator unit, a backing plate and a knuckle. The electric actuator unit includes an electric motor and a decelerator, and expands a gap between one end portions of the brake shoes based on activation of the electric motor. The electric actuator unit is separately provided from the backing plate. The electric actuator unit is arranged at an inner-side surface of the knuckle, and the backing plate is arranged at an outer-side surface of the knuckle. The backing plate and the electric actuator unit are supported and fixed to the knuckle.
Abstract: A unit friction pad assembly constituting a disk brake friction pad assembly includes a lining assembly which is oscillatably inserted into the guide hole portion of a guide plate to transmit a braking torque from a plate engagement portion to the guide plate and is urged toward the guide plate by a spring member, and a clearance hold mechanism for holding a clearance between the guide plate and torque receiving plate.
Abstract: A cast-iron friction member is manufactured by: performing a nitrocarburizing treatment on a cast workpiece at a treatment temperature of 500° C. to 600° C. to thus form a nitrogen compound layer on a surface of the workpiece; and exposing the workpiece to an atmosphere when a temperature becomes 400° C. to 480° C. after the nitrocarburizing treatment so as to cool the workpiece to a room temperature while keeping a contact state with oxygen to thus form an iron oxide layer including Fe3O4 on a surface of the nitrogen compound layer.
Abstract: A friction material including two or more kinds of titanates and a ceramic fiber. The friction material includes no copper component. The two or more kinds of titanates may optionally include two or more kinds of alkali metal titanates, or the two or more kinds of titanates may optionally include an alkaline earth metal-alkali metal titanate and an alkali metal titanate.
Abstract: A pad spring for a disk brake includes a mounting portion configured to be elastically mounted onto radial outside portions of pad support members of the disk brake; a pressure portion having a pair of pressure arms configured to elastically press outer circumferential edges of circumferential-direction one-end portions of back plates of pads of the disk brake inwardly in a radial direction of a rotor of the disk brake; and a held plate section formed between torque transmission surfaces of the back plates and torque receiving surfaces of the pad support members. The pad spring is formed by bending an elastic and corrosion-resistant metal plate so as to elastically press the pads in the radial direction.
Abstract: A disk brake friction pad assembly includes lining assemblies which are oscillatably inserted into the guide hole portions of a guide plate to transmit a braking torque from plate engagement portions to the guide plate and are urged toward the guide plate by spring members, and a link plate for applying pressure from a torque receiving plate to the multiple lining assemblies and also for holding a clearance between the guide plate and torque receiving plate.
Abstract: A brake system comprising: (a) a body assembly comprising: (i) an outboard side, (ii) an inboard side, (iii) a bridge extending between and connecting the inboard side and the outboard side, and (iv) two or more piston assemblies located entirely on the outboard side, entirely on the inboard side, or located both on the inboard side and the outboard side; and (b) an electric brake assembly comprising: (i) one or more differential assemblies in communication with the body assembly and each of the two or more piston assemblies; wherein the one or more differential assemblies provide power equally to each of the two or more piston assemblies so that each of the piston assemblies are moved axially in unison until a resistance of one of the two or more piston assemblies becomes higher than a remainder of the two or more piston assemblies and the one or more differential assemblies transfer power from the piston assembly with the higher resistance to the remainder of piston assemblies with a lower resistance so tha
Type:
Grant
Filed:
October 31, 2014
Date of Patent:
May 31, 2016
Assignee:
AKEBONO BRAKE INDUSTRY CO., LTD
Inventors:
Kenneth Eric Gutelius, Galus Chelaidite
Abstract: A mold of a brake pad friction material, including a mold member fitted into a mold frame into which a powder material of the brake pad friction material is put, in which the mold member is configured such that a pressing surface in a surface of the mold member, which forms a region abutting the powder material put into a mold frame, has a concave shape that is formed by being gradually recessed from both end portion sides to a center portion side of the pressing surface.
Abstract: A disc brake pad assembly includes a pad and a shim plate. The shim plate includes locking pieces which are bent from a main body portion towards a pressure plate. The locking pieces are brought into abutment with circumferential edge portions of the pressure plate so as to be displaced in a rotating direction of a rotor. Projecting portions are formed at portions of the circumferential edge portion which are brought into abutment with one surface of each of the locking pieces. A circumferential central portion of a part of each of the projecting portions which faces the one surface projects further than both circumferential end portions thereof. The circumferential edge portion and the one surface of each of the locking pieces are spaced apart from each other at portions of the one surface which lie close to both circumferential end portions thereof.
Abstract: A dampening clip comprising: a body portion and a connecting portion extending from the body portion, the connecting portion being configured to connect the dampening clip to an adjacent component, and wherein the dampening clip includes a portion made of a supporting material and a portion made of a dampening material.
Abstract: An article comprising: a heat transfer preventer, the heat transfer preventer comprising: a body portion and one or more convection plates, the one or more convection plates being connected to and extending from the body portion; wherein the body portion includes one or more unitary attachment devices extending therefrom for attachment to a piston, a brake pad, or both.