Abstract: Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.
Abstract: Presented herein are methods of using cell wall degrading enzymes for recovery of internal lipid bodies from biomass sources such as algae. Also provided are algal cells that express at least one exogenous gene encoding a cell wall degrading enzyme and methods for recovering lipids from the cells.
Type:
Grant
Filed:
December 31, 2012
Date of Patent:
March 24, 2015
Assignee:
Alliance for Sustainable Energy, LLC
Inventors:
Eric P. Knoshaug, Bryon S. Donohoe, Henri Gerken, Lieve Laurens, Stefanie Rose Van Wychen
Abstract: Disclosed embodiments include methods of fabricating a semiconductor layer or device and devices fabricated thereby. The methods include, but are not limited to, providing a substrate having a cubic crystalline surface with a known lattice parameter and growing a cubic crystalline group III-nitride alloy layer on the cubic crystalline substrate by coincident site lattice matched epitaxy. The cubic crystalline group III-nitride alloy may be prepared to have a lattice parameter (a?) that is related to the lattice parameter of the substrate (a). The group III-nitride alloy may be a cubic crystalline InxGayAl1-x-yN alloy. The lattice parameter of the InxGayAl1-x-yN or other group III-nitride alloy may be related to the substrate lattice parameter by (a?)=?2(a) or (a?)=(a)/?2. The semiconductor alloy may be prepared to have a selected band gap.
Type:
Grant
Filed:
August 31, 2009
Date of Patent:
February 24, 2015
Assignee:
Alliance for Sustainable Energy, LLC
Inventors:
Andrew G. Norman, Aaron J. Ptak, William E. McMahon
Abstract: Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.
Type:
Grant
Filed:
May 21, 2012
Date of Patent:
January 27, 2015
Assignee:
Alliance for Sustainable Energy, LLC
Inventors:
Thomas Gennett, David S. Ginley, Wade Braunecker, Chunmei Ban, Zbyslaw Owczarczyk
Abstract: Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.
Type:
Application
Filed:
September 12, 2014
Publication date:
December 25, 2014
Applicant:
ALLIANCE FOR SUSTAINABLE ENERGY, LLC
Inventors:
Thomas GENNETT, David S. GINLEY, Wade BRAUNECKER, Chunmei Ban, Zbyslaw OWCZARCZYK
Abstract: A method for making a photovoltaic device is presented. The method includes steps of disposing a window layer on a substrate and disposing an absorber layer on the window layer. Disposing the window layer, the absorber layer, or both layers includes introducing a source material into a deposition zone, wherein the source material comprises oxygen and a constituent of the window layer, of the absorber layer or of both layers. The method further includes step of depositing a film that comprises the constituent and oxygen.
Type:
Grant
Filed:
July 28, 2011
Date of Patent:
December 16, 2014
Assignees:
First Solar, Inc., Alliance for Sustainable Energy, LLC
Inventors:
James Neil Johnson, David Scott Albin, Scott Feldman-Peabody, Mark Jeffrey Pavol, Robert Dwayne Gossman
Abstract: Described herein are solar reflectors which provide a low cost reflector construction that has a unique set of attributes: high solar reflectance, abrasion resistance, UV stability, mechanical integrity, and flexibility. The abrasion resistance is enabled through incorporation of an abrasion-resistant coating into a polymer film metal mirror construction. Methods of using the solar reflectors in solar concentrating applications are also provided.
Type:
Application
Filed:
September 6, 2011
Publication date:
December 4, 2014
Applicants:
ALLIANCE FOR SUSTAINABLE ENERGY, LLC, SKYFUEL, INC.
Inventors:
Randy Gee, Mike Digrazia, Gary Jorgensen
Abstract: Photovoltaic sub-cell interconnect systems and methods are provided. In one embodiment, a photovoltaic device comprises a thin film stack of layers deposited upon a substrate, wherein the thin film stack layers are subdivided into a plurality of sub-cells interconnected in series by a plurality of electrical interconnection structures; and wherein the plurality of electrical interconnection structures each comprise no more than two scribes that penetrate into the thin film stack layers.
Type:
Application
Filed:
May 21, 2014
Publication date:
November 27, 2014
Applicant:
Alliance for Sustainable Energy, LLC
Inventors:
Marinus Franciscus Antonius Maria van Hest, Heather Anne Swinger Platt
Abstract: Systems and methods for semiconductor device PN junction fabrication are provided. In one embodiment, a method for fabricating an electrical device having a P-N junction comprises: depositing a layer of amorphous semiconductor material onto a crystalline semiconductor base, wherein the crystalline semiconductor base comprises a crystalline phase of a same semiconductor as the amorphous layer; and growing the layer of amorphous semiconductor material into a layer of crystalline semiconductor material that is epitaxially matched to the lattice structure of the crystalline semiconductor base by applying an optical energy that penetrates at least the amorphous semiconductor material.
Abstract: Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers.
Abstract: Disclosed herein are biocatalysts for the production of biofuels, including microorganisms that contain genetic modifications conferring tolerance to growth and fermentation inhibitors found in many cellulosic feedstocks. Methods of converting cellulose-containing materials to fuels and chemicals, as well as methods of fermenting sugars to fuels and chemicals, using these biocatalysts are also disclosed.
Type:
Application
Filed:
April 29, 2014
Publication date:
November 20, 2014
Applicant:
Alliance for Sustainable Energy, LLC
Inventors:
Shihui YANG, Jeffrey LINGER, Mary Ann FRANDEN, Philip T. PIENKOS, Min ZHANG
Abstract: Disclosed herein are methods of treating a semiconductor surface by nitridation and deposition of a ruthenium alloy. Also disclosed are semiconductors treated with these methods, their incorporation into photoelectrochemical cells, and their use in photoelectrochemical water splitting.
Type:
Application
Filed:
May 13, 2014
Publication date:
November 13, 2014
Applicant:
Alliance for Sustainable Energy, LLC
Inventors:
Todd DEUTSCH, John TURNER, Jennifer LEISCH, Heli WANG, Adam WELCH, Avery LINDEMAN, Kevin O'NEILL, Andrew PINKARD, Arrelaine DAMERON, Clemens HESKE, Kyle GEORGE, Lothar WEINHARDT, Michael WEIR
Abstract: Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.
Abstract: An indirect evaporative cooler for cooling inlet supply air from a first temperature to a second, lower temperature using a stream of liquid coolant and a stream of exhaust or purge air. The cooler includes a first flow channel for inlet supply air and a second flow channel adjacent the first for exhaust air. The first and second flow channels are defined in part by sheets of a membrane permeable to water vapor such that mass is transferred as a vapor through the membrane from the inlet supply air to a contained liquid desiccant for dehumidification and also to the exhaust air as heat is transferred from the inlet supply air to the liquid coolant. A separation wall divides the liquid desiccant and the coolant but allows heat to be transferred from the supply air to the coolant which releases water vapor to the counter or cross flowing exhaust air.
Abstract: Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.
Type:
Grant
Filed:
November 9, 2006
Date of Patent:
November 4, 2014
Assignee:
Alliance for Sustainable Energy, LLC
Inventors:
Calvin J. Curtis, Alexander Miedaner, Maikel Van Hest, David S. Ginley
Abstract: Photovoltaic thin-film materials comprising crystalline tin sulfide alloys of the general formula Sn1-x(R)xS, where R is selected from magnesium, calcium and strontium, as well as methods of producing the same, are disclosed.
Abstract: A method (100) of fabricating an LED or the active regions of an LED and an LED (200). The method includes growing, depositing or otherwise providing a bottom cladding layer (208) of a selected semiconductor alloy with an adjusted bandgap provided by intentionally disordering the structure of the cladding layer (208). A first active layer (202) may be grown above the bottom cladding layer (208) wherein the first active layer (202) is fabricated of the same semiconductor alloy, with however, a partially ordered structure. The first active layer (202) will also be fabricated to include a selected n or p type doping. The method further includes growing a second active layer (204) above the first active layer (202) where the second active layer (204) Is fabricated from the same semiconductor alloy.
Type:
Grant
Filed:
April 15, 2010
Date of Patent:
October 21, 2014
Assignee:
Alliance for Sustainable Energy, LLC
Inventors:
Angelo Mascarenhas, Myles A. Steiner, Lekhnath Bhusal, Yong Zhang
Abstract: A concentrated solar power (CSP) plant comprises a receiver configured to contain a chemical substance for a chemical reaction and an array of heliostats. Each heliostat is configured to direct sunlight toward the receiver. The receiver is configured to transfer thermal energy from the sunlight to the chemical substance in a reduction reaction. The CSP plant further comprises a first storage container configured to store solid state particles produced by the reduction reaction and a heat exchanger configured to combine the solid state particles and gas through an oxidation reaction. The heat exchanger is configured to transfer heat produced in the oxidation reaction to a working fluid to heat the working fluid. The CSP plant further comprises a power turbine coupled to the heat exchanger, such that the heated working fluid turns the power turbine, and a generator coupled to and driven by the power turbine to generate electricity.
Abstract: Systems and methods for thermal imaging for measuring mixing of fluids are provided. In one embodiment, a method for measuring mixing of gaseous fluids using thermal imaging comprises: positioning a thermal test medium parallel to a direction gaseous fluid flow from an outlet vent of a momentum source, wherein when the source is operating, the fluid flows across a surface of the medium; obtaining an ambient temperature value from a baseline thermal image of the surface; obtaining at least one operational thermal image of the surface when the fluid is flowing from the outlet vent across the surface, wherein the fluid has a temperature different than the ambient temperature; and calculating at least one temperature-difference fraction associated with at least a first position on the surface based on a difference between temperature measurements obtained from the at least one operational thermal image and the ambient temperature value.
Type:
Application
Filed:
March 25, 2014
Publication date:
October 2, 2014
Applicant:
Alliance for Sustainable Energy, LLC
Inventors:
Charles BOOTEN, Jeff TOMERLIN, Jon WINKLER
Abstract: An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.
Type:
Grant
Filed:
January 17, 2013
Date of Patent:
September 23, 2014
Assignee:
Alliance for Sustainable Energy, LLC
Inventors:
Min Zhang, Arjun Singh, Pirkko Suominen, Eric Knoshaug, Mary Ann Franden, Eric Jarvis