Abstract: Liquid precursors containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semiconductor applications are disclosed. Methods of preparing such liquid precursors and methods of depositing a precursor on a substrate are also disclosed.
Type:
Application
Filed:
September 13, 2013
Publication date:
March 27, 2014
Applicant:
Alliance for Sustainable Energy, LLC
Inventors:
Calvin J. CURTIS, Alexander MIEDANER, Marinus FRANCISCUS ANTONIUS MARIA VAN HEST, David S. GINLEY, Peter A. HERSH, Louay ELDADA, Billy J. STANBERY
Abstract: An apparatus (500) for fatigue testing elongate test articles (404) including wind turbine blades through forced or resonant excitation of the base (406) of the test articles (404). The apparatus (500) includes a testing platform or foundation (402). A blade support (410) is provided for retaining or supporting a base (406) of an elongate test article (404), and the blade support (410) is pivotally mounted on the testing platform (402) with at least two degrees of freedom of motion relative to the testing platform (402). An excitation input assembly (540) is interconnected with the blade support (410) and includes first and second actuators (444, 446, 541) that act to concurrently apply forces or loads to the blade support (410). The actuator forces are cyclically applied in first and second transverse directions. The test article (404) responds to shaking of its base (406) by oscillating in two, transverse directions (505, 507).
Type:
Grant
Filed:
December 12, 2008
Date of Patent:
March 25, 2014
Assignee:
Alliance for Sustainable Energy, LLC
Inventors:
Jason Cotrell, Robert Thresher, Scott Lambert, Scott Hughes, Jay Johnson
Abstract: A multijunction photovoltaic device (300) is provided. The multijunction photovoltaic device (300) includes a substrate (301) and one or more intermediate sub-cells (303a-303c) coupled to the substrate (301). The multijunction photovoltaic device (300) further includes a top sub-cell (304) comprising an AlxIn1-xP alloy coupled to the one or more intermediate sub-cells (303a-303c) and lattice mismatched to the substrate (301).
Type:
Application
Filed:
May 7, 2012
Publication date:
March 13, 2014
Applicant:
Alliance for Sustainable Energy, LLC
Inventors:
Kirstin Alberi, Angelo Mascarenhas, Mark W. Wanlass
Abstract: Systems and methods for compensated barrier permeability testing are provided. In one embodiment, a method for testing water vapor penetration through a barrier material comprises: obtaining a first series of resistance measurements from a first moisture sensor located on a substrate surface of a test card, wherein the first moisture sensor is exposed to a testing chamber sealed onto the substrate surface of the test card; obtaining a second series of resistance measurements from a second moisture sensor, wherein the second moisture sensor is isolated from the testing chamber, wherein the testing chamber is defined by a cavity within a spacer element that separates the first moisture sensor from a test barrier; and determining a measurement of water vapor penetration through the test barrier by adjusting the first series of resistance measurement based on the second series of resistance measurement.
Type:
Application
Filed:
September 13, 2013
Publication date:
March 13, 2014
Applicant:
Alliance for Sustainable Energy, LLC
Inventors:
Matthew REESE, Arrelaine DAMERON, Michael KEMPE
Abstract: Thin film electronic devices (or stacks integrated with a substrate) that include a permeation barrier formed of a thin layer of metal that provides a light transmitting and electrically conductive layer, wherein the electrical conductive layer is formed on a surface of the substrate or device layer such as a transparent conducting material layer with pin holes or defects caused by manufacturing and the thin layer of metal is deposited on the conductive layer and formed from a self-healing metal that forms self-terminating oxides. A permeation plug or block is formed in or adjacent to the thin film of metal at or proximate to the pin holes to block further permeation of contaminants through the pin holes.
Abstract: An apparatus (200) for detecting slow or thermal neutrons (160). The apparatus (200) includes an alpha particle-detecting layer (240) that is a hydrogenated amorphous silicon p-i-n diode structure. The apparatus includes a bottom metal contact (220) and a top metal contact (250) with the diode structure (240) positioned between the two contacts (220, 250) to facilitate detection of alpha particles (170). The apparatus (200) includes a neutron conversion layer (230) formed of a material containing boron-10 isotopes. The top contact (250) is pixilated with each contact pixel extending to or proximate to an edge of the apparatus to facilitate electrical contacting. The contact pixels have elongated bodies to allow them to extend across the apparatus surface (242) with each pixel having a small surface area to match capacitance based upon a current spike detecting circuit or amplifier connected to each pixel.
Type:
Application
Filed:
September 13, 2013
Publication date:
March 6, 2014
Applicant:
Alliance for Sustainable Energy, LLC
Inventors:
Pauls STRADINS, Howard M. BRANZ, Qi WANG, Harold R. McHUGH
Abstract: A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.
Type:
Grant
Filed:
July 23, 2010
Date of Patent:
March 4, 2014
Assignee:
Alliance for Sustainable Energy, LLC
Inventors:
Matthew Reese, Arrelaine Dameron, Michael Kempe
Abstract: The invention provides oxygen-resistant iron-hydrogenases ([Fe]-hydrogenases) for use in the production of H2. Methods used in the design and engineering of the oxygen-resistant [Fe]-hydrogenases are disclosed, as are the methods of transforming and culturing appropriate host cells with the oxygen-resistant [Fe]-hydrogenases. Finally, the invention provides methods for utilizing the transformed, oxygen insensitive, host cells in the bulk production of H2 in a light catalyzed reaction having water as the reactant.
Type:
Grant
Filed:
January 27, 2009
Date of Patent:
March 4, 2014
Assignee:
Alliance for Sustainable Energy, LLC
Inventors:
Paul King, Maria Lucia Ghirardi, Michael Seibert
Abstract: Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting a metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.
Type:
Grant
Filed:
June 8, 2012
Date of Patent:
February 4, 2014
Assignee:
Alliance for Sustainable Energy, LLC
Inventors:
David S. Ginley, Calvin J. Curtis, Alex Miedaner, Marinus Franciscus Antonius Maria van Hest, Tatiana Kaydanova
Abstract: Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.
Type:
Grant
Filed:
August 31, 2007
Date of Patent:
February 4, 2014
Assignee:
Alliance for Sustainable Energy, LLC
Inventors:
Dane T. Gillaspie, Se-Hee Lee, C. Edwin Tracy, John Roland Pitts
Abstract: A system and a process for forming a semi-conductor device, and solar cells (10) formed thereby. The process includes preparing a substrate (12) for deposition of a junction layer (14); forming the junction layer (14) on the substrate (12) using hot wire chemical vapor deposition; and, finishing the semi-conductor device.
Type:
Grant
Filed:
November 9, 2007
Date of Patent:
February 4, 2014
Assignee:
Alliance for Sustainable Energy, LLC
Inventors:
Qi Wang, Matthew Page, Eugene Iwaniczko, Tihu Wang, Yanfa Yan
Abstract: Disclosed herein are combinations of free fungal enzymes and cellulosomes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using the combinations are also disclosed.
Type:
Application
Filed:
July 29, 2013
Publication date:
January 30, 2014
Applicant:
Alliance for Sustainable Energy, LLC
Inventors:
Michael RESCH, John O. BAKER, Xu QI, William S. ADNEY, Steven R. DECKER, Michael E. HIMMEL, Bryon DONOHOE
Abstract: Provided herein is an isolated Cel7A polypeptide comprising mutations in the catalytic domain of the polypeptide relative to the catalytic domain of a wild type Cel7A polypeptide, wherein the mutations reduce N-linked glycosylation of the isolated polypeptide relative to the wild type polypeptide. Also provided herein is an isolated Cel7A polypeptide comprising increased O-linked glycosylation of the linker domain relative to a linker domain of a wild type Cel7A polypeptide. The increased O-linked glycosylation is a result of the addition of and/or substitution of one or more serine and/or threonine residues to the linker domain relative to the linker domain of the wild type polypeptide. In some embodiments, the isolated Cel7A polypeptide comprising mutations in the catalytic domain of the polypeptide relative to the catalytic domain of a wild type Cel7A polypeptide further comprises increased O-linked glycosylation of the linker domain relative to a linker domain of a wild type Cel7A polypeptide.
Type:
Grant
Filed:
May 19, 2008
Date of Patent:
January 28, 2014
Assignee:
Alliance for Sustainable Energy, LLC
Inventors:
William S. Adney, Michael E. Himmel, Stephen R. Decker, Eric P. Knoshaug, Mark R. Nimlos, Michael F. Crowley, Tina Jeoh
Abstract: An apparatus (100) for fatigue testing test articles (104) including wind turbine blades. The apparatus (100) includes a test stand (110) that rigidly supports an end (106) of the test article (104). An actuator assembly (120) is attached to the test article (104) and is adapted for substantially concurrently imparting first and second forcing functions in first and second directions on the test article (104), with the first and second directions being perpendicular to a longitudinal axis. A controller (130) transmits first and second sets of displacement signals (160, 164) to the actuator assembly (120) at two resonant frequencies of the test system (104). The displacement signals (160, 164) initiate the actuator assembly (120) to impart the forcing loads to concurrently oscillate the test article (104) in the first and second directions. With turbine blades, the blades (104) are resonant tested concurrently for fatigue in the flapwise and edgewise directions.
Type:
Grant
Filed:
December 9, 2008
Date of Patent:
January 7, 2014
Assignee:
Alliance for Sustainable Energy, LLC
Inventors:
Scott Hughes, Walter Musial, Darris White
Abstract: Large volume calorimeters (100) and small volume, or cell, calorimeters (700), as well as methods of making and using the same, are provided.
Type:
Application
Filed:
March 9, 2012
Publication date:
January 2, 2014
Applicant:
Alliance for Sustainable Energy, LLC
Inventors:
Matthew Allen Keyser, Ahmad Pesaran, Mark Alan Mihalic, John Ireland
Abstract: A photovoltaic (PV) device with improved blue response. The PV device includes a silicon substrate with an emitter layer on a light receiving side. The emitter layer has a low opant level such that it has sheet resistance of 90 to 170 ohm/sq. Anti-reflection in the PV device is provided solely by a nano-structured or black silicon surface on the light-receiving surface, through which the emitter is formed by diffusion. The nano structures of the black silicon are formed in a manner that does not result in gold or another high-recombination metal being left in the black silicon such as with metal-assisted etching using silver. The black silicon is further processed to widen these pores so as to provide larger nanostructures with lateral dimensions in the range of 65 to 150 nanometers so as to reduce surface area and also to etch away a highly doped portion of the emitter.
Type:
Application
Filed:
March 8, 2011
Publication date:
December 26, 2013
Applicant:
ALLIANCE FOR SUSTAINABLE ENERGY, LLC
Inventors:
Jihun Oh, Howard M. Branz, Hao-Chih Yuan
Abstract: An apparatus for conditioning an inlet air stream. A first stage is provided with a dehumidifier cooling an air stream input by absorption of water vapor from the input air stream. A second stage is provided with an indirect evaporative cooler to receive a cooled portion of the input air stream and sensibly cool the received portion of the input air stream to a temperature range near the dew point temperature. A first portion of the sensibly cooled air stream is exhausted to a cooled space while a second portion is directed to a wet side of the indirect evaporative cooler and receives heat to sensibly cool the input air stream. A flow channel for the second portion of the sensibly cooled air stream in the indirect evaporative cooler is defined by a surface of a separation wall covered with wicking material acting to wick a stream of liquid coolant.
Abstract: A thin film stack (100, 200) is provided for use in electronic devices such as photovoltaic devices. The stack (100, 200) may be integrated with a substrate (110) such as a light transmitting/transmissive layer. An electrical conductor layer (120, 220) is formed on a surface of the substrate (110) or device layer such as a transparent conducting (TC) material layer (120, 220) with pin holes or defects (224) caused by manufacturing. The stack (100) includes a thin film (130, 230) of metal that acts as a barrier for environmental contaminants (226, 228). The metal thin film (130, 230) is deposited on the conductor layer (120, 220) and formed from a self-healing metal such as a metal that forms self-terminating oxides. A permeation plug or block (236) is formed in or adjacent to the thin film (130, 230) of metal at or proximate to the pin holes (224) to block further permeation of contaminants through the pin holes (224).
Abstract: Improved thin-film photovoltaic devices and methods of manufacturing such devices are described. Embodiments include a substrate-configured thin-film PV device (200) having a photo-absorbing semiconductor layer (230) and a window layer (240). Embodiments include devices having a CdTe photo-absorbing semiconductor layer, a CdS or CdS:In window layer, and an n-p junction residing at or proximate an interface of the photo-absorbing semiconductor and window layers. Variations include methods of manufacture wherein i) O2 is excluded from an ambient environment during deposition of the CdTe layer (102), ii) O2 is included in an ambient environment during CdCl2 treatment (103), iii) O2 is included in an ambient environment during deposition of a CdS or CdS:In layer (104), or iv) a medium-temperature anneal (MTA) having an anneal temperature of 300° C. or less is performed (105) after deposition of the CdS layer.
Type:
Application
Filed:
February 27, 2012
Publication date:
December 12, 2013
Applicant:
ALLIANCE FOR SUSTAINABLE ENERGY, LLC
Inventors:
Ramesh Dhere, Joel Duenow, Timothy A. Gessert
Abstract: Isoelectronic co-doping of semiconductor compounds and alloys with acceptors and deep donors is sued to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. For example, Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, B and Bi, to customize solar cells, and other semiconductor devices. Isoelectronically co-doped Group II-VI compounds and alloys are also included.