Patents Assigned to Analog Device, Inc.
  • Patent number: 10432409
    Abstract: An authentication system and device including physical unclonable function (PUF) and threshold cryptography comprising: a PUF device having a PUF input and a PUF output and constructed to generate, in response to the input of a challenge, an output value characteristic to the PUF and the challenge; and a processor having a processor input that is connected to the PUF output, and having a processor output connected to the PUF input, the processor configured to: control the issuance of challenges to the PUF input via the processor output, receive output from the PUF output, combine multiple received PUF output values each corresponding to a share of a private key or secret, and perform threshold cryptographic operations. The system and device may be configured so that shares are refreshable, and may be configured to perform staggered share refreshing.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: October 1, 2019
    Assignee: Analog Devices, Inc.
    Inventor: John Ross Wallrabenstein
  • Publication number: 20190296756
    Abstract: Amplifiers can be found in pipelined ADCs and pipelined-SAR ADCs as inter-stage amplifiers. The amplifiers can in some cases implement and provide gains in high speed track and hold circuits. The amplifier structures can be open-loop amplifiers, and the amplifier structures can be used in MDACs and samplers of high speed ADCs. The amplifiers can be employed without resetting, and with incomplete settling, to maximize their speed and minimize their power consumption. The amplifiers can be calibrated to improve performance.
    Type: Application
    Filed: February 20, 2019
    Publication date: September 26, 2019
    Applicant: Analog Devices, Inc.
    Inventor: Ahmed Mohamed Abdelatty ALI
  • Patent number: 10425235
    Abstract: Various embodiments enhance security and tamper resistance of device or components having a hardware intrinsic identity. For example, devices or components having PUFs can map challenges and helper values to a secret or share of secret to utilize a local identity in cryptographic operations. A plurality of components having individual identities can be extend so that the plurality of components can enroll into a shared global identity. Shares of the global identity can be distributed among the plurality of components or devices such that at least two devices must provide at least two shares of the global identity (or threshold operations on the at least two shares) to successfully use the global identity. Such sharing mitigates adversarial tampering attack on the global identity. Share refresh protocols can provide additional security, enable introduction of new components or devices to the global identity, and allow removal of existing components or devices.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: September 24, 2019
    Assignee: Analog Devices, Inc.
    Inventors: John Ross Wallrabenstein, Thomas Joseph Brindisi
  • Patent number: 10419014
    Abstract: The present disclosure provides a simplified, multiple-gain, front-end circuit for analog-to-digital converter systems. In an example, a front-end circuit for an analog-to-digital converter (ADC) can include first and second input amplifiers configured to receive an input signal, and a gain selection circuit coupled to the first input amplifier and the second input amplifier; the gain selection circuit comprising a plurality resistor strings, each resistor string including a plurality of resistors coupled in series, and wherein each string includes a first end node coupled to an output of the first input amplifier and a second end node coupled to an output of the second input amplifier.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: September 17, 2019
    Assignee: Analog Devices, Inc.
    Inventor: Maithil M. Pachchigar
  • Patent number: 10415968
    Abstract: Micromachined inertial devices are presented having multiple linearly-moving masses coupled together by couplers that move in a linear fashion when the coupled masses exhibit anti-phase motion. The couplers move in opposite directions of each other, such that one coupler on one side of the movable masses moves in a first linear direction and another coupler on the opposite side of the movable masses moves in a second linear direction opposite the first linear direction. The couplers ensure proper anti-phase motion of the masses.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: September 17, 2019
    Assignee: Analog Devices, Inc.
    Inventors: Igor P. Prikhodko, John A. Geen, Jeffrey A. Gregory
  • Publication number: 20190278733
    Abstract: Disclosed herein are two-wire communication systems and applications thereof. In some embodiments, a slave node transceiver for low latency communication may include upstream transceiver circuitry to receive a first signal transmitted over a two-wire bus from an upstream device and to provide a second signal over the two-wire bus to the upstream device; downstream transceiver circuitry to provide a third signal downstream over the two-wire bus toward a downstream device and to receive a fourth signal over the two-wire bus from the downstream device; and clock circuitry to generate a clock signal at the slave node transceiver based on a preamble of a synchronization control frame in the first signal, wherein timing of the receipt and provision of signals over the two-wire bus by the node transceiver is based on the clock signal.
    Type: Application
    Filed: May 30, 2019
    Publication date: September 12, 2019
    Applicant: Analog Devices, Inc.
    Inventors: Martin KESSLER, Miguel CHAVEZ, Lewis F. LAHR, William HOOPER, Robert Adams, Peter SEALEY
  • Publication number: 20190273505
    Abstract: Random chopping is an effective technique for data converters. Random chopping can calibrate offset errors, calibrate offset mismatch in interleaved ADCs, and dither even order harmonics. However, the non-idealities of the (analog) chopper circuit can limit its effectiveness. If left uncorrected, these non-idealities cause severe degradation in the noise floor that defeats the purpose of chopping, and the non-idealities may be substantially worse than the non-idealities that chopping is meant to fix. To address the non-idealities of the random chopper, calibration techniques can be applied, using correlators and calibrations that may already be present for the data converter. Therefore, the cost and digital overhead are negligible. Calibrating the chopper circuit can make the chopping more effective, while relaxing the design constraints imposed on the analog circuitry.
    Type: Application
    Filed: February 1, 2019
    Publication date: September 5, 2019
    Applicant: Analog Devices, Inc.
    Inventors: Ahmed Mohamed Abdelatty ALI, Bryan S. PUCKETT
  • Patent number: 10404059
    Abstract: Distributed switches to suppress transient electrical overstress-induced latch-up are provided. In certain configurations, an integrated circuit (IC) or semiconductor chip includes a transient electrical overstress detection circuit that activates a transient overstress detection signal in response to detecting a transient electrical overstress event between a pair of power rails. The IC further includes mixed-signal circuits and latch-up suppression switches distributed across the IC, and the latch-up suppression switches temporarily clamp the power rails to one another in response to activation of the transient overstress detection signal to inhibit latch-up of the mixed-signal circuits.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: September 3, 2019
    Assignee: Analog Devices, Inc.
    Inventors: Javier Alejandro Salcedo, Srivatsan Parthasarathy, Linfeng He, Yuanzhong Zhou
  • Patent number: 10404264
    Abstract: A method of performing analog-to-digital conversion using a successive approximation (SAR) analog-to-digital converter (ADC). A previous digital output is compared to a range based on the first M bits of the previous digital output. If the previous digital output is within that range, a digital-to-analog converter (DAC) of the SAR ADC is preloaded with the first M bits of the previous digital output, prior to commencing bit trials. If the previous digital output is outside of that range, an offset is applied to the first M bits of the previous digital output and the DAC is preloaded based on the M bits and the offset, prior to performing bit trials. This method reduces the possibility of the next input being outside of a further range defined by the preload.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: September 3, 2019
    Assignee: Analog Devices, Inc.
    Inventors: Baozhen Chen, Lalinda D. Fernando, Zhichao Tan
  • Patent number: 10404313
    Abstract: Low noise amplifiers (LNAs) with output limiting are provided herein. In certain implementations, a gallium nitride (GaN) LNA includes LNA amplification circuitry and an output limiter that is connected to an output of the LNA amplification circuitry and operable to limit an output power of the GaN LNA. By limiting the output signal power, a number of benefits are achieved, including protection of downstream circuitry receiving the GaN LNA's output signal. For example, such downstream circuitry can be fabricated using silicon or other fabrication technology associated with a lower signal power handling capability relative to that of the GaN LNA.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: September 3, 2019
    Assignee: Analog Devices, Inc.
    Inventor: Keith Benson
  • Patent number: 10397021
    Abstract: Disclosed herein are systems and techniques for slave-to-slave communication in a multi-node, daisy-chained network. Slave nodes may provide or receive upstream or downstream data directly to/from other slave nodes, without the need for data slots first to route through the master node.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: August 27, 2019
    Assignee: Analog Devices, Inc.
    Inventors: Martin Kessler, William Hooper, Lewis F. Lahr
  • Publication number: 20190257654
    Abstract: Sense amplifiers for use in connection with microelectromechanical system (MEMS) gyroscopes are described. The sense amplifiers may be configured to change the level of a gyroscope signal, i.e., the signal produced by a gyroscope in response to angular motion, to a level suitable for processing circuitry arranged to infer the angular velocity. The sense amplifier may further provide a DC discharge path allowing for discharge of the DC component of the output signal. The DC discharge path may include an anti-aliasing filter and a resistive circuit. The anti-aliasing filter may filter the output signal to maintain the resistive circuit in the linear region. The anti-aliasing filter may be designed with a frequency response such that discrete frequency sub-bands are blocked or at least attenuated. The frequency sub-bands may be tuned to substantially match the gyroscope's resonant frequency and its integer multiples.
    Type: Application
    Filed: February 20, 2018
    Publication date: August 22, 2019
    Applicant: Analog Devices, Inc.
    Inventors: Jiefeng Yan, William A. Clark
  • Patent number: 10389312
    Abstract: A power amplifier circuit for broadband data communication over a path in a communication network can reduce or avoid gain compression, provide low distortion amplification performance, and can accommodate a wider input signal amplitude range. A dynamic variable bias current circuit can be coupled to a common emitter bias node of a differential pair of transistors to provide a dynamic variable bias current thereto as a function of an input signal amplitude of an input signal. Bias current is increased when input signal amplitude exceeds a threshold voltage established by an offset or level-shifting circuit. The frequency response of the bias current circuit can track the frequency content of the input signal. A delay in the signal path to the differential pair can phase-align the bias current to the amplification by the differential pair. A dynamic variable supply voltage can be based on an envelope of the input signal.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: August 20, 2019
    Assignee: Analog Devices, Inc.
    Inventor: Christopher John Day
  • Patent number: 10389434
    Abstract: Data isolators for providing isolation between two ports that enable dynamic communication are described. The dynamic communication may be achieved by varying a ratio of the data rate relative to a clock frequency of a clock signal. The data isolator may include a first circuit that transmits data across an isolation barrier when the clock signal is in a first state and a second circuit that transmits data across the isolation barrier when the clock signal is in a second state. The clock frequency may be variable and, as a result, change the duration of data transmissions in a given clock cycle. For example, the clock frequency may be reduced to increase the number of bits transmitted per clock cycle and, conversely, increased to reduce the number of bits transmitted per clock cycle. Thus, the number of bits transmitted per clock cycle may be adjusted to suit the situation.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: August 20, 2019
    Assignee: Analog Devices, Inc.
    Inventor: Lawrence Getzin
  • Patent number: 10382048
    Abstract: Disclosed herein are systems for calibrating an analog-to-digital converter (ADC) device, as well as related devices and methods. In some embodiments, a system for calibrating an ADC device may include an ADC device, wherein the ADC device includes an ADC and a dither source, and wherein the ADC device is to apply a set of calibration parameters to generate digital outputs. The system may also include calibration circuitry, coupled to the ADC device, to determine which of multiple sets of values of calibration parameters results in the digital outputs having the lowest amount of noise, and to cause the ADC device to apply the calibration parameters associated with the lowest noise.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: August 13, 2019
    Assignee: ANALOG DEVICES, INC.
    Inventors: Paul R. Fernando, Sudarshan Ananda Natarajan
  • Patent number: 10383024
    Abstract: A system and method of reducing data-rate requirements of fronthauls for wireless communication is disclosed. In one aspect, the system includes a baseband processing unit and a remote radio head remotely located from the baseband processing unit. The remote radio head is configured to transmit and receive communication signals with the baseband processing unit. The system can also include a fronthaul configured to provide a communication channel between the baseband processing unit and the remote radio head for the communication signals, and a matched filter configured to filter out redundant information from the communications signals before the communications signals are provided to the fronthaul.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: August 13, 2019
    Assignee: Analog Devices, Inc.
    Inventor: Eyosias Yoseph Imana
  • Patent number: 10382614
    Abstract: Apparatus and methods are disclosed related to managing characteristics of a mobile device based upon capacitive detection of materials proximate the mobile device, a capacitive gesture system that can allow the same gestures be used in arbitrary locations within range of a mobile device. One such method includes receiving a first capacitive sensor measurement with a first capacitive sensor of the mobile device. The method further includes determining a value indicative of a material adjacent to the mobile device based on a correspondence between the first capacitive sensor measurement and stored values corresponding to different materials. The method further includes sending instructions to adjust a characteristic of the mobile device based on the determined value indicative of the material adjacent to the mobile device. In certain examples, gesture sensing can be performed using capacitive measurements from the capacitive sensors.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: August 13, 2019
    Assignee: ANALOG DEVICES, INC.
    Inventor: Isaac Chase Novet
  • Patent number: 10382962
    Abstract: A network authentication system with dynamic key generation that facilitates the establishment of both endpoint identity, as well as a secure communication channel using a dynamically-generated key between two end devices (potentially on separate local area networks). An interactive or non-interactive authentication protocol is used to establish the identity of the target end device, and dynamic key generation is used to establish a shared symmetric session key for creating an encrypted communication channel between the end devices.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: August 13, 2019
    Assignee: Analog Devices, Inc.
    Inventors: John J. Walsh, John Ross Wallrabenstein, Charles J. Timko
  • Publication number: 20190245501
    Abstract: One embodiment is an apparatus including a detector circuit electrically coupled between a signal source and a second circuit, the signal source generating a first signal, the detector circuit detecting a level of the first signal and generating a first control signal when the detected level of the first signal exceeds a first threshold value, and a clamping switch electrically coupled to receive the first control signal from the detector circuit, the clamping switch including a multi-terminal active device. The first control signal controls a state of the clamping switch such that the clamping switch clamps a level of a signal applied to the second circuit when the level of the first signal exceeds the first threshold value.
    Type: Application
    Filed: February 2, 2018
    Publication date: August 8, 2019
    Applicant: Analog Devices, Inc.
    Inventors: Huseyin DINC, Bryce GRAY, Ahmed Mohamed Abdelatty ALI
  • Patent number: RE47601
    Abstract: The present disclosure discloses a digital-to-analog converter (DAC) design which is suitable for providing a high output power high-speed DAC, e.g., in radio frequency applications. The DAC design utilizes a parallel DAC structure, e.g., having 8 parallel DACs and an aggregate current output, to provide a high and programmable current output (in some implementations, up to 512 mA or more). The parallel DAC structure alleviates the design problems which exist in trying to output a high amount of current using a single DAC. The DAC design further utilizes a hybrid structure which integrates the signal chain for a more reliable system. In some embodiments, the hybrid structure uses a CMOS process for the current sources and switches and a GaAs cascode stage for combining the outputs to optimally leverage the advantages of both technologies. The result is a highly efficient DAC (with peak output power programmable up to 29 dBm or more).
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: September 10, 2019
    Assignee: ANALOG DEVICES, INC.
    Inventors: Bernd Schafferer, Bing Zhao