Patents Assigned to Analog Device, Inc.
  • Patent number: 9716470
    Abstract: Provided herein are apparatus and methods for compensating an operational amplifier (op-amp). In certain configurations, a compensation network is electrically connected between an output node of the op-amp and an input differential pair coupled source/emitter tail-current node. The compensation network can include a capacitor having a relatively low value of capacitance. In this manner, op-amp bandwidth is improved while power consumption is reduced to meet a “green” standard.
    Type: Grant
    Filed: May 21, 2015
    Date of Patent: July 25, 2017
    Assignee: Analog Devices, Inc.
    Inventor: Abhishek Bandyopadhyay
  • Patent number: 9716479
    Abstract: The present disclosure provides an amplifier and associated methods of operations. An exemplary amplifier an input terminal; an output terminal; a first virtual ground node; a second virtual ground node; an operational amplifier coupled with the input terminal and the output terminal; a resistive input section coupled with an input of the operational amplifier; and a resistive feedback section coupled with an output of the operational amplifier. The resistive input section includes a fixed input resistor coupled with the input terminal and the first virtual ground node, and a switchable input resistor segment coupled with the fixed input resistor in parallel. The resistive feedback section includes a fixed feedback resistor coupled with the output terminal and the first virtual ground node, and a switchable feedback resistor segment coupled with the fixed feedback resistor in parallel.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: July 25, 2017
    Assignee: ANALOG DEVICES, INC.
    Inventor: Edward Perry Jordan
  • Patent number: 9709400
    Abstract: A gyroscope control circuit for a vibratory gyroscope system includes an open-loop RSP control circuit and a closed-loop CSP control circuit. The gyroscope control circuit optionally may include a Q compensation circuit to compensate for variations in gyroscope sensitivity due to variations in resonator signal path Q. The resonator signal path and the Coriolis signal path may have transduction factors that are proportional to each other such that sensitivity of the gyroscope varies directly with resonator signal path quality factor (Q).
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: July 18, 2017
    Assignee: Analog Devices, Inc.
    Inventor: Ronald Alan Kapusta
  • Patent number: 9709595
    Abstract: A method of detecting motion provides a resonator having a mass, moves the mass in a translational mode, and actuates the mass in a given bulk mode. The mass moves in the translational and given bulk modes at substantially the same time and, accordingly, the resonator is configured to detect linear and rotational movement when moving and actuating the mass in the translational and given bulk modes. The method produces one or more movement signals representing the detected linear and rotational movement.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: July 18, 2017
    Assignee: Analog Devices, Inc.
    Inventors: Gaurav Vohra, John A. Geen
  • Patent number: 9712181
    Abstract: During operation of a SAR ADC, several of the MSBs can be preloaded with predetermined bit decisions prior to carrying out bit trials. A system and method can be provided for incrementally preloading the predetermined bit decisions such as to maintain voltages present at comparator inputs within a limited range of acceptable input voltages.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: July 18, 2017
    Assignee: Analog Devices, Inc.
    Inventors: Baozhen Chen, Edward C. Guthrie, Michael C. W. Coln, Mark D. Maddox
  • Patent number: 9710121
    Abstract: Systems and methods to determine locations for dual touch operations performed on a four-wire resistive touch screen. The systems and methods may include measuring signals from pairs of electrodes on each of a first and second resistive sheet of the resistive touch screen in two phases of operation. The systems and methods may further include determining touch screen segment resistances from the signal measurements. The systems and methods may determine locations corresponding to the dual touch operations from the resistances. The systems and methods may also determine locations from the signal measurements.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: July 18, 2017
    Assignee: ANALOG DEVICES, INC.
    Inventors: Javier Calpe Maravilla, Italo Carlos Medina, Maria Jose Martinez, Alberto Carbajo Galve
  • Patent number: 9703306
    Abstract: In one example, a method for compensating for a temperature effect during operation of a voltage regulator circuit includes applying a load current at an output of the voltage regulator circuit, measuring a first output voltage at the output, measuring a reference current or voltage, increasing the load current, measuring a change in the reference current or voltage corresponding to the increased load current, measuring a second output voltage when the measured change in the reference current exceeds a threshold, and determining a temperature coefficient (TC) value based on the measured second output voltage.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: July 11, 2017
    Assignee: Analog Devices, Inc.
    Inventors: Brandon Day, Mark Szostkiewicz
  • Patent number: 9702690
    Abstract: An optical detector may include an aperture, at least two photodetectors, and a measuring arrangement to quantify light detected at the photodetectors after passing through the aperture without the need for a lens. The aperture may be positioned between a light source and the two photodetectors to allow light from a light source to pass through the aperture to the photodetectors. The photodetectors may include PIN junction photodiodes and may be electrically isolated from each other, positioned next to each other in a side-by-side configuration, and then aligned with the aperture so that a proportion of the quantified light detected at the photodetectors changes as an angle of light from the light source incident to the aperture changes. Optical detectors and methods are provided.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: July 11, 2017
    Assignee: ANALOG DEVICES, INC.
    Inventor: Shrenik Deliwala
  • Patent number: 9696355
    Abstract: A system and method to detect the fundamental frequency of an electric input signal using a feedback control loop including a phase error detector, a loop controller, and a digitally controlled oscillator. The frequency detector may detect the fundamental frequency of an electric input signal and produce an output signal representing the fundamental frequency of the electric input signal. The frequency detector may further include a filter that may be coupled to the frequency detector output signal in order to remove spurious tones or noise from the output signal.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: July 4, 2017
    Assignee: Analog Devices, Inc.
    Inventor: Gabriel Antonesei
  • Patent number: 9698759
    Abstract: An approach to time domain filtering uses a passive charge sharing approach to implement an infinite impulse response filter. Delayed samples of an input signal are stored as charges on capacitors of a first array of capacitors, and delayed samples of the output signal are stored as charges on capacitors of a second array of capacitors. Outputs are determined by passively coupling capacitors of the first and second arrays to one another, and determining the output according to a total charge on the coupled capacitors. In some examples, a gain is applied to the total charge prior to storing the output on the second array of capacitors. In some examples, a charge scaling circuit is applied to the charges stored on the arrays prior to coupling capacitors to form the output.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: July 4, 2017
    Assignee: ANALOG DEVICES, INC.
    Inventors: Eric Nestler, Jeffrey Venuti, Vladimir Zlatkovic, Kartik Nanda
  • Patent number: 9698805
    Abstract: A system and method can be provided for sampling the residual error in an oversampled SAR ADC, bandpass filtering the sampled residual error, and providing the bandpass filtered signal to an input of a DAC, such as to provide a bandpass filtered output of the SAR ADC. The bandpass filtered output of the SAR ADC can have a reduced electrical noise.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: July 4, 2017
    Assignee: Analog Devices, Inc.
    Inventor: Abhishek Bandyopadhyay
  • Patent number: 9698127
    Abstract: An integrated device die and package is disclosed. The integrated device die includes a unitary body. The unitary body can have an upper portion comprising one or more active components. The upper portion can have first and second opposing lateral sides defining at least a portion of a periphery of the upper portion such that an upper surface of the upper portion is disposed between upper edges of the first and second opposing lateral sides. The unitary body can also have a lower portion monolithically formed with the upper portion. The lower portion can comprise a pedestal extending downwardly from the upper portion. The pedestal can be laterally inset from lower edges of the first and second opposing lateral sides. The pedestal can include a distal end portion configured to couple to a carrier.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: July 4, 2017
    Assignee: ANALOG DEVICES, INC.
    Inventors: Thomas M. Goida, Xiaojie Xue
  • Patent number: 9697005
    Abstract: In an example, there is disclosed a digital signal processor having a register containing a modular integer configured for use as a thread offset counter. In a multi-stage, pipelined loop, which may be implemented in microcode, the main body of the loop has only one repeating stage. On each stage, the operation executed by each thread of the single repeating stage is identified by the sum of a fixed integer and the thread offset counter. After each pass through the loop, the thread offset counter is incremented, thus maintaining pipelined operation of the single repeating stage.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: July 4, 2017
    Assignee: ANALOG DEVICES, INC.
    Inventor: Boris Lerner
  • Patent number: 9692473
    Abstract: Aspects of this disclosure relate to compensating for an offset in a receiver. In one embodiment, the receiver comprises a mixer, a feedback amplifier, and an offset correction circuit. The offset correction circuit can generate an indication of an offset in a differential input to the feedback amplifier and apply an offset compensation signal at an offset compensation node. The offset compensation node can be in a signal path of the feedback amplifier. Such offset compensation can reduce or eliminate leakage from a local oscillator at an input port of the mixer and/or at an antenna port of the receiver.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: June 27, 2017
    Assignee: ANALOG DEVICES, INC.
    Inventors: Kevin Glenn Gard, Robert C. Glenn
  • Patent number: 9689903
    Abstract: In an embodiment, a body of apparatus includes an opening, such as a V-shaped jaw, that deterministically locates a position of a wire in at least one dimension when the wire is placed in the opening. The apparatus also includes a plurality of sensors. At least one differential signal can be generated from signals from magnetic sensors, such as anisotropic magnetoresistance (AMR) sensors, of the plurality of sensors to cancel out common mode interference. An additional sensor of the plurality of sensors provides an output from which the location of the wire in another dimension is determined. The current flowing through the wire can be derived from at least the at least one differential signal and the location of the wire the other dimension.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: June 27, 2017
    Assignee: Analog Devices, Inc.
    Inventors: Yogesh Jayaraman Sharma, Nathan R. Carter, Teera Songatikamas, Brendan Cronin
  • Patent number: 9692875
    Abstract: Apparatus and methods are disclosed related to managing characteristics of a mobile device based upon capacitive detection of materials proximate the mobile device, a capacitive gesture system that can allow the same gestures be used in arbitrary locations within range of a mobile device. One such method includes receiving a first capacitive sensor measurement with a first capacitive sensor of the mobile device. The method further includes determining a value indicative of a material adjacent to the mobile device based on a correspondence between the first capacitive sensor measurement and stored values corresponding to different materials. The method further includes sending instructions to adjust a characteristic of the mobile device based on the determined value indicative of the material adjacent to the mobile device. In certain examples, gesture sensing can be performed using capacitive measurements from the capacitive sensors.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: June 27, 2017
    Assignee: ANALOG DEVICES, INC.
    Inventor: Isaac Chase Novet
  • Publication number: 20170178664
    Abstract: Use of spoken input for user devices, e.g. smartphones, can be challenging due to presence of other sound sources. Blind source separation (BSS) techniques aim to separate a sound generated by a particular source of interest from a mixture of different sounds. Various BSS techniques disclosed herein are based on recognition that providing additional information that is considered within iterations of a nonnegative tensor factorization (NTF) model improves accuracy and efficiency of source separation. Examples of such information include direction estimates or neural network models trained to recognize a particular sound of interest. Furthermore, identifying and processing incremental changes to an NTF model, rather than re-processing the entire model each time data changes, provides an efficient and fast manner for performing source separation on large sets of quickly changing data. Carrying out at least parts of BSS techniques in a cloud allows flexible utilization of local and remote sources.
    Type: Application
    Filed: March 26, 2015
    Publication date: June 22, 2017
    Applicant: ANALOG DEVICES, INC.
    Inventors: DAVID WINGATE, BENJAMIN VIGODA, PATRICK OHIOMOBA, BRIAN DONNELLY, NOAH DANIEL STEIN
  • Patent number: 9685932
    Abstract: Provided herein are apparatus and methods for enhancing bandwidth in trench isolated integrated circuits. In certain configurations, an auxiliary trench forming floating regions between moat isolation regions can isolate parasitic sidewall capacitances of active device regions from ground or AC ground. In this manner the active device regions are merged by the auxiliary trench so as to improve circuit bandwidth and enhance circuit performance. When arranged or combined within a circuit branch, transistors within each floating moat can operate with relatively small parasitic displacement current and can have improved performance.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: June 20, 2017
    Assignee: Analog Devices, Inc.
    Inventors: Edward P. Jordan, Jonathan Glen Pfeifer
  • Publication number: 20170170839
    Abstract: For analog-to-digital converters (ADCs) which utilize a feedback digital-to-analog converter (DAC) for conversion, the final analog output can be affected or distorted by errors of the feedback DAC. A digital measurement technique can be implemented to determine timing mismatch error for the feedback DAC in a continuous-time delta-sigma modulator (CTDSM) or in a continuous-time pipeline modulator. The methodology utilizes cross-correlation of each DAC unit elements (UEs) output to the entire modulator output to measure its timing mismatch error respectively. Specifically, the timing mismatch error is estimated using a ratio based on a peak value and a value for the next tap in the cross-correlation function. The obtained errors can be stored in a look-up table and fully corrected in digital domain or analog domain.
    Type: Application
    Filed: November 23, 2016
    Publication date: June 15, 2017
    Applicant: ANALOG DEVICES, INC.
    Inventors: Jialin Zhao, Qingdong Meng, Yunzhi Dong, Jose Barreiro Silva
  • Publication number: 20170169132
    Abstract: Present disclosure aims to accelerate computer-implemented function evaluation by accelerating determination of a table index and a fraction required for interpolation when a processor uses lookup table based function approximation to compute a function of a particular input value. Systems and methods proposed herein are based on an insight that, by carefully selecting configuration for a lookup table used for function approximation, it is possible to reduce determination of table index and fraction to simple shifting of bits of an input value. Once table index and fraction are determined according to systems and methods proposed herein, the value of the function for the given input value may be computed as known in the art.
    Type: Application
    Filed: December 15, 2015
    Publication date: June 15, 2017
    Applicant: ANALOG DEVICES, INC.
    Inventors: DAVID M. HOSSACK, TIMOTHY J. CAPUTO