Patents Assigned to Analog Devices
  • Patent number: 10200029
    Abstract: A low capacitance n-channel analog switch circuit, a p-channel analog switch circuit, and a full CMOS transmission gate (T-gate) circuit are described. Resistive decoupling can be used to isolate the switch or T-gate from AC grounds, such as one or more switch control signal inputs or supply voltages. A semiconductor region that is separated from a body region of a pass field-effect transistor (FET) can be coupled to or driven to a voltage similar to the input voltage or other desired voltage to help reduce parasitic capacitance of the switch or T-gate. The switch or T-gate can have improved frequency bandwidth or frequency response. The switch can be useful in a programmable gain amplifier (PGA) or programmable gain instrumentation amplifier (PGIA) or other circuit in which excessive switch capacitance could degrade circuit performance.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: February 5, 2019
    Assignee: Analog Devices, Inc.
    Inventors: Sandro Herrera, Alan K Jeffery
  • Patent number: 10193603
    Abstract: A communication unit comprises a plurality of antenna element feeds (203, 205) for coupling to a plurality of antenna elements of an antenna array, where each antenna element feed comprises at least one coupler; and a plurality of transmitters operably coupled to the plurality of antenna element feeds. At least one transmitter of the plurality of transmitters comprises: an input for receiving a first signal and at least one second signal; beamformer logic arranged to apply independent beamform weights (RefBF1, RefBF2) on the first signal and the at least one second signal of the transmitter respectively, wherein each of the independent beamform weights is allocated on a per sector basis; and a signal combiner arranged to combine the first signal and the second signal to produce a combined signal, such as that the combined signal supports a plurality of sectored beams.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: January 29, 2019
    Assignee: Analog Devices Global
    Inventors: Conor O'Keeffe, Michael O'Brien, Sean Sexton
  • Patent number: 10193507
    Abstract: A wide range differential current switching circuit can operate across a wide range of input currents and across a broad range of frequencies. A first differential current source can include a first transistor and a second transistor. The first transistor receives a switching signal and provides an output current and at output node. The second transistor receives an inverted switching signal, the first transistor and the second transistor coupled to each other at a tail node. A current source provides an input current to the tail node. A third transistor can provide a boost current to the tail node while the first transistor is off.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: January 29, 2019
    Assignee: Analog Devices Global
    Inventors: Celal Avci, Bilal Tarik Cavus
  • Publication number: 20190027322
    Abstract: A method of fabricating a super-capacitor provides a substrate, and then adds an electrode and electrolyte template film, having a well for receiving the electrode, to the substrate. The method also adds a second electrolyte to the electrode and electrolyte template.
    Type: Application
    Filed: September 24, 2018
    Publication date: January 24, 2019
    Applicant: Analog Devices, Inc.
    Inventors: Yingqi Jiang, Kuang L. Yang
  • Patent number: 10185340
    Abstract: A connection device for connecting a load to a power supply, comprising at least first and second current control devices arranged in parallel between the power supply and the load, and a controller arranged to switch the current control devices on in sequence for temporally overlapping on periods.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: January 22, 2019
    Assignee: Analog Devices, Inc.
    Inventors: George Redfield Spalding, Jr., Marcus O'Sullivan
  • Publication number: 20190018467
    Abstract: Disclosed herein are systems and techniques for adaptive use of multiple power supplies in a communication system. For example, in some embodiments, a slave device may include: an upstream transceiver to couple to an upstream link of a bus of a communication system; and circuitry to couple to the upstream link of the bus and to a local power supply, wherein the circuitry is to switch from providing the local power supply to power the slave device to providing bus power supplied by the upstream link of the bus to power the slave device.
    Type: Application
    Filed: June 27, 2018
    Publication date: January 17, 2019
    Applicant: Analog Devices Global Unlimited Company
    Inventors: Stuart PATTERSON, Martin KESSLER, Prashant TRIPATHI
  • Publication number: 20190019644
    Abstract: An microelectromechanical switch uses electrostatic attraction to draw a beam toward a contact and electromagnetic repulsion to disengage and repel the beam from the contact. The electrostatic attraction is generated by a gate electrode. The electromagnetic repulsion is generated between the beam and a magnetic coil positioned on the same side of the beam as the contact. The magnetic coil produces a magnetic field, which induces a current in the beam that repels the magnetic coil. The gate electrode and the magnetic coil may be co-planar or in different planes. A circuit may also operate a coil-shaped structure act as the gate electrode and the magnetic coil, depending on the configuration.
    Type: Application
    Filed: July 17, 2017
    Publication date: January 17, 2019
    Applicant: Analog Devices Global Unlimited Company
    Inventors: Check F. Lee, Philip James Brennan
  • Patent number: 10180448
    Abstract: A delta-sigma modulator circuit comprising: an integrator circuit configured to produce an integrator output signal that represents an integration of an analog input signal, a comparator output signal and a periodic signal; a comparator circuit configured to produce the comparator output signal in response to a comparison of the integrator output signal with a first reference signal; and a periodic signal generation circuit configured to produce the periodic signal.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: January 15, 2019
    Assignee: Analog Devices, Inc.
    Inventors: Gabriele Bernardinis, Michael Daly
  • Patent number: 10181853
    Abstract: Systems for monitoring or control can include reconfigurable input and output channels. Such reconfigurable channels can include as few as a single terminal and a ground pin, or such channels can include three or four terminal configuration such as for use in four-terminal resistance measurements. Channel reconfiguration can be accomplished such as using software-enabled or firmware-enabled control of channel hardware. Such channel hardware can include analog-to-digital and digital-to-analog conversion capability, including use of a digital-to-analog converter to provide field power or biasing. In an example, the interface circuit can provide a selectable impedance.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: January 15, 2019
    Assignee: Analog Devices Global
    Inventors: Colm Slattery, Patrick C. Kirby, Albert O'Grady, Denis O'Connor, Michael Collins, Valerie Hamilton, Aidan J. Cahalane, Michal Brychta
  • Patent number: 10181719
    Abstract: A protection device is provided that is placed in series connection between an input or signal node and a node to be protected. If the node to be protected is a relatively high impedance node, such as the gate of a MOSFET, then the protection device need not carry much current. This enables it to be built to be very fast. This enables it to respond rapidly to an overvoltage event so as to protect the circuit connected to the node to be protected. The protection device may be used in conjunction with other protection cells that offer greater current carrying capability and controllable trigger voltages, but which are intrinsically slower acting.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: January 15, 2019
    Assignee: Analog Devices Global
    Inventor: Edward John Coyne
  • Patent number: 10181860
    Abstract: A residue generation apparatus for use in continuous-time and hybrid ADCs is proposed. The apparatus includes a quantizer for digitizing an analog input to generate a digital output, and means for applying a first transfer function to the digital output from the quantizer to generate a digital input to a feedforward DAC, based on which the DAC can generate a feedforward path analog output. The apparatus further includes means for applying a second, continuous-time, transfer function to the analog input provided to the quantizer to generate a forward path analog output, and a subtractor for generating a residue signal based on a difference between the forward path analog output and the feedforward path analog output. Proposed apparatus allows selecting a combination of the first and second transfer functions so that, when each is applied in its respective path, the residue signal passed to further stages of an ADC is reduced.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: January 15, 2019
    Assignee: Analog Devices Global Unlimited Company
    Inventors: Sharvil Pradeep Patil, Hajime Shibata, Wenhua William Yang, David Nelson Alldred, Yunzhi Dong, Gabriele Manganaro, Kimo Tam
  • Publication number: 20190013668
    Abstract: A method of and apparatus for protecting a MEMS switch is provided. The method and apparatus improve the integrity of MEMS switches by reducing their vulnerability to current flow through them during switching of the MEMS switch between on and off or vice versa. The protection circuit provides for a parallel path, known as a shunt, around the MEMS component. However, components within the shunt circuit can themselves be removed from the shunt when they are not required. This improves the electrical performance of the shunt when the switch is supposed to be in an off state.
    Type: Application
    Filed: July 13, 2018
    Publication date: January 10, 2019
    Applicant: Analog Devices Global Unlimited Company
    Inventors: Padraig Fitzgerald, Eric James Carty
  • Patent number: 10177717
    Abstract: For broadband data communication, a data signal voltage at a signal input node can be converted to an output signal current at a signal output node. A first transistor device can contribute to the output signal current, with its transconductance or other gain reduced to accommodate larger signal swings, at which a second transistor can turn on and increase an effective resistance value of at least a portion of a gain degeneration resistor associated with the first transistor device. The second transistor can also contribute to the output signal current to help maintain or enhance an overall gain between the signal input node and the signal output node. Multiple secondary stages, push-pull arrangements, buffer amplifier configurations (which may or may not contribute to current in the gain degeneration resistor), input and output transformers, negative feedback to help reduce component variability, and frequency modification circuits or components are also described.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: January 8, 2019
    Assignee: Analog Devices, Inc.
    Inventors: Chris J. Day, David Frank, Michael Glasbrener
  • Patent number: 10170929
    Abstract: Apparatus and techniques described herein can include a load circuit comprising a direct current (DC) input terminal, and a source circuit comprising a direct current (DC) output terminal coupled to the DC input terminal of the load circuit. The source circuit can include a source control circuit configured to provide a current-limited DC output voltage and monitor the current-limited DC output voltage to detect an authentication signal provided at the DC output terminal by the load circuit, the load circuit configured to modulate the voltage at the DC output terminal using a pull-down circuit. The load circuit can be configured to compare the supply voltage at the DC input terminal to a reference voltage and, in response, energize other portions of the load circuit when the input current provided the DC input terminal is sufficient as indicated at least in part by the comparison.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: January 1, 2019
    Assignee: Analog Devices Global
    Inventors: Bin Shao, Yanfeng Lu, Scott D. Biederwolf
  • Patent number: 10168194
    Abstract: Various embodiments mitigate the risk of frequency-lock in systems having multiple resonators by dynamically changing the frequency at which at least one of the resonators is driven. More particularly, the drive frequency of at least one of the resonators is changed often enough that the multiple resonators do not have time to achieve frequency lock. Changes in the oscillation of the resonators may be analyzed to determine, for example, acceleration of such systems. Some embodiments implement self-test by assessing expected performance of a system with toggling drive frequencies. More particularly, some embodiments implement self-test by artificially inducing displacement of a movable member of a system.
    Type: Grant
    Filed: December 24, 2015
    Date of Patent: January 1, 2019
    Assignee: Analog Devices, Inc.
    Inventors: Gaurav Vohra, William A. Clark, Mehrnaz Motiee
  • Patent number: 10167189
    Abstract: A MEMS product includes a stress-isolated MEMS platform surrounded by a stress-relief gap and suspended from a substrate. The stress-relief gap provides a barrier against the transmission of mechanical stress from the substrate to the platform.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: January 1, 2019
    Assignee: Analog Devices, Inc.
    Inventors: Xin Zhang, Michael W. Judy, George M. Molnar, Christopher Needham, Kemiao Jia
  • Patent number: 10171102
    Abstract: A linear continuous-time (CT) delaying summation block is one of the key building blocks for CT multi-stage analog-to-digital converters (ADCs) such as CT pipeline ADCs and CT multi-stage delta-sigma (MASH) ADCs. The CT summation block is typically used on a stage of a CT multi-stage ADC to subtract a digital-to-analog converter (DAC) output signal from an analog input signal of the stage. Rather than using a current-mode summation, the CT delaying summation block can be implemented with voltage-mode summation.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: January 1, 2019
    Assignee: Analog Devices Global Unlimited Company
    Inventors: Hajime Shibata, Yunzhi Dong, Zhao Li, Trevor Clifford Caldwell, Wenhua William Yang
  • Patent number: 10164614
    Abstract: Embodiments of the present disclosure may provide a circuit comprising a tank circuit. The tank circuit may include an inductor having a pair of terminals, a first pair of transistors, and a first pair of capacitors. Each transistor may be coupled between a respective terminal of the inductor and a reference voltage along a source-to-drain path of the transistor. Each capacitor may be provided in a signal path between an inductor terminal coupled to a respective first transistor in the first pair and a gate of a second transistor in the first pair.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: December 25, 2018
    Assignee: Analog Devices Global Unlimited Company
    Inventors: Xin Yang, Tianting Zhao, Baoxing Chen
  • Patent number: 10158334
    Abstract: A capacitive gain amplifier circuit amplifies an input signal by a pair of differential amplifier circuits couples in series. The first differential amplifier circuit is reset during an autozero phase while disconnected from the second differential amplifier circuit, and the first and second differential amplifier circuits are connected together in series during a chop phase. A set of feedback capacitors is selectively switched in between respective outputs of the second differential amplifier circuit and respective inputs of the first differential amplifier circuit during the chop phase.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: December 18, 2018
    Assignee: Analog Devices Global
    Inventors: Hanqing Wang, Gerard Mora-Puchalt
  • Patent number: 10158029
    Abstract: Apparatus and methods for compound semiconductor protection clamps are provided herein. In certain configurations, a compound semiconductor protection clamp includes a resistor-capacitor (RC) trigger network and a metal-semiconductor field effect transistor (MESFET) clamp. The RC trigger network detects when an ESD/EOS event is present between a first node and a second node, and activates the MESFET clamp in response to detecting the ESD/EOS event. When the MESFET clamp is activated, the MESFET clamp provides a low impedance path between the first and second nodes, thereby providing ESD/EOS protection. When deactivated, the MESFET clamp provides high impedance between the first and second nodes, and thus operates with low leakage current and small static power dissipation.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: December 18, 2018
    Assignee: Analog Devices, Inc.
    Inventors: Srivatsan Parthasarathy, Javier Alejandro Salcedo