Patents Assigned to Applied Materials
  • Patent number: 10551731
    Abstract: An extreme ultraviolet mask and method of manufacture thereof includes: providing a glass-ceramic block; forming a glass-ceramic substrate from the glass-ceramic block; and depositing a planarization layer on the glass-ceramic substrate.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: February 4, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Ralf Hofmann, Majeed Foad, Cara Beasley
  • Patent number: 10551328
    Abstract: A test fixture includes an outer conductor and an inner conductor disposed within and electrically isolated from the outer conductor. The inner conductor includes a top portion having a first diameter, a bottom portion having a second diameter, and a third portion proximate the bottom portion that has a third diameter that is less than the second diameter and is greater than the first diameter. An electrical property of a chamber component disposed within the outer conductor is measurable based on application of a signal to at least one of the outer conductor or the inner conductor.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: February 4, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Satoru Kobayashi, Yufei Zhu, Saurabh Garg, Soonam Park, Dmitry Lubomirsky
  • Publication number: 20200035540
    Abstract: Exemplary apparatuses for centering and/or leveling a pedestal of a processing chamber may include a mounting block having a central axis, a set of first gauges mounted on the mounting block, and a set of second gauges mounted on the mounting block. The set of second gauges may be mounted substantially perpendicular to the set of first gauges. The plurality of first gauges may be configured to obtain measurements indicative of a degree of parallelism between a gas distribution plate of the processing chamber and the pedestal. The plurality of second gauges may be configured to obtain measurements indicative of a degree of axial alignment of a ring member of the processing chamber and the pedestal. The exemplary apparatuses may be used for centering and/or leveling the pedestal under vacuum.
    Type: Application
    Filed: July 30, 2018
    Publication date: January 30, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Paneendra Prakash Bhat, Mehmet Samir, Nikolai Kalnin
  • Patent number: 10544505
    Abstract: A method of performing deposition of diamond-like carbon on a workpiece in a chamber includes supporting the workpiece in the chamber facing an upper electrode suspended from a ceiling of the chamber, introducing a hydrocarbon gas into the chamber, and applying first RF power at a first frequency to the upper electrode that generates a plasma in the chamber and produces a deposition of diamond-like carbon on the workpiece. Applying the RF power generates an electron beam from the upper electrode toward the workpiece to enhance ionization of the hydrocarbon gas.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: January 28, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Yang Yang, Kartik Ramaswamy, Kenneth S. Collins, Steven Lane, Gonzalo Antonio Monroy, Lucy Chen, Yue Guo
  • Patent number: 10546732
    Abstract: A sputter deposition source for sputter deposition in a vacuum chamber is described. The source includes a wall portion of the vacuum chamber; a target providing a material to be deposited during the sputter deposition; an RF power supply for providing RF power to the target; a power connector for connecting the target with the RF power supply; and a conductor rod extending through the wall portion from inside of the vacuum chamber to outside of the vacuum chamber, wherein the conductor rod is connected to one or more components inside of the vacuum chamber and wherein the conductor rod is connected to the RF power supply outside of the vacuum chamber to generate a defined RF return path through the conductor rod.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: January 28, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Stefan Keller, Uwe Schüβler, Dieter Haas, Stefan Bangert
  • Patent number: 10546762
    Abstract: Methods of drying a semiconductor substrate may include applying a drying agent to a semiconductor substrate, where the drying agent wets the semiconductor substrate. The methods may include heating a chamber housing the semiconductor substrate to a temperature above an atmospheric pressure boiling point of the drying agent until a vapor-liquid equilibrium of the drying agent within the chamber has been reached. The methods may further include venting the chamber, where the venting vaporizes the liquid phase of the drying agent from the semiconductor substrate.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: January 28, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Eric J. Bergman, John L. Klocke, Paul McHugh, Stuart Crane, Richard W. Plavidal
  • Patent number: 10546729
    Abstract: Described processing chambers may include a chamber housing at least partially defining an interior region of the semiconductor processing chamber. The chambers may include a pedestal. The chambers may include a first showerhead positioned between the lid and the processing region, and may include a faceplate positioned between the first showerhead and the processing region. The chambers may also include a second showerhead positioned within the chamber between the faceplate and the processing region of the semiconductor processing chamber. The second showerhead may include at least two plates coupled together to define a volume between the at least two plates. The at least two plates may at least partially define channels through the second showerhead, and each channel may be characterized by a first diameter at a first end of the channel and may be characterized by a plurality of ports at a second end of the channel.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: January 28, 2020
    Assignee: Applied Materials, Inc.
    Inventor: Dmitry Lubomirsky
  • Patent number: 10546973
    Abstract: Oxygen controlled PVD AlN buffers for GaN-based optoelectronic and electronic devices is described. Methods of forming a PVD AlN buffer for GaN-based optoelectronic and electronic devices in an oxygen controlled manner are also described. In an example, a method of forming an aluminum nitride (AlN) buffer layer for GaN-based optoelectronic or electronic devices involves reactive sputtering an AlN layer above a substrate, the reactive sputtering involving reacting an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-containing gas or a plasma based on a nitrogen-containing gas. The method further involves incorporating oxygen into the AlN layer.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: January 28, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Nag B. Patibandla, Rongjun Wang, Daniel Lee Diehl, Vivek Agrawal, Anantha Subramani
  • Publication number: 20200027767
    Abstract: A carrier for use in a vacuum system is described. The carrier includes: a magnet arrangement including one or more first permanent magnets; one or more second permanent magnets; and a magnet device configured to change a magnetization of the one or more first permanent magnets. The carrier may be used for carrying a mask device or a substrate in the vacuum system. Further, a vacuum system and a method of operating a vacuum system are described.
    Type: Application
    Filed: March 17, 2017
    Publication date: January 23, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Sebastian Gunther ZANG, Andreas SAUER
  • Patent number: 10541184
    Abstract: Embodiments may include a method of etching. The method may also include flowing a gas mixture through a plasma discharge to form plasma effluents. The method may further include flowing the plasma effluents through a plurality of apertures to a layer on a substrate. The layer may have a first thickness. In addition, the method may include etching the layer with the plasma effluents. The method may also include measuring the intensity of emission from a reaction of plasma effluents with the layer. The method may further include summing the intensity of the emission while the plasma effluents are being flowed to the layer to obtain an integrated intensity. The method may then include comparing the integrated intensity to a reference value corresponding to a target etch thickness. The method may include extinguishing the plasma discharge when the integrated intensity is equal to or greater than the reference value.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: January 21, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Soonwook Jung, Soonam Park, Dmitry Lubomirsky
  • Patent number: 10541159
    Abstract: Embodiments disclosed herein relate to a processing chamber having a lens disposed therein. In one embodiment, the processing chamber includes a chamber body, a substrate support assembly, a light source, and a lens. The chamber body defines an interior volume of the processing chamber. The interior volume has a first area and a second area. The substrate support assembly is disposed in the second area. The substrate support assembly is configured to support a substrate. The light source is disposed above the substrate support assembly in the first area. The lens is disposed between the light source and the substrate support assembly. The lens includes a plurality of features formed therein. The plurality of features is configured to preferentially direct light from the light source to an area of interest on the substrate when disposed on the substrate support assembly.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: January 21, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Orlando Trejo, Ramprakash Sankarakrishnan, Tza-Jing Gung
  • Patent number: 10541104
    Abstract: A method and a charged particle beam system that includes charged particle beam optics and a movable stage; wherein the movable stage is configured to introduce a movement between the object and charged particle beam optics; wherein the movement is of a constant velocity and along a first direction; wherein the charged particle beam optics is configured to scan, by the charged particle beam, multiple areas of the object so that each point of the multiple areas is scanned multiple times; wherein the multiple areas partially overlap; wherein the scanning is executed by the charged particle beam optics; wherein the scanning comprises performing counter-movement deflections of the charged particle beam for at least partially compensating for the movement; and wherein each area of the multiple areas is scanned by following an area scan scheme that defines multiple scan lines that differ from each other.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: January 21, 2020
    Assignee: Applied Materials Israel Ltd.
    Inventors: Uri Lev, Alon Litman, Zvi Nir, Arnon Mizrahy
  • Patent number: 10541169
    Abstract: Embodiments of the disclosure relate to methods and a system for adjusting the chucking voltage of an electrostatic chuck. In one embodiment, a system for plasma processing a substrate includes a plasma processing chamber, a radio-frequency (RF) matching circuit coupled to the chamber, a sensor and a controller. The chamber includes a chamber body having an inner volume, a bipolar electrostatic chuck disposed in the inner volume and a power supply configured to provide chucking voltage to a pair of electrodes embedded within the electrostatic chuck. When plasma is energized within the chamber by the application of RF power through an RF matching circuit, the sensor is configured to detect a change in an electrical characteristic at the RF matching circuit. The controller is coupled to the power supply and configured to adjust the chucking voltage in response to the change in the electrical characteristic detected by the sensor.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: January 21, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Chong Jiang, Lei Jing, Mingte Liu, Adolph Miller Allen, Michael W. Johnson, Pallavi Zhang, Michael D. Armacost
  • Patent number: 10541113
    Abstract: Described processing chambers may include a chamber housing at least partially defining an interior region of a semiconductor processing chamber. The chamber may include a showerhead positioned within the chamber housing, and the showerhead may at least partially divide the interior region into a remote region and a processing region in which a substrate can be contained. The chamber may also include an inductively coupled plasma source positioned between the showerhead and the processing region. The inductively coupled plasma source may include a conductive material within a dielectric material.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: January 21, 2020
    Assignee: Applied Materials, Inc.
    Inventor: Dmitry Lubomirsky
  • Patent number: 10541165
    Abstract: Embodiments provide systems, apparatus, and methods for an improved load port that includes a backplane assembly supporting a docking tray and a substrate carrier opener, wherein the backplane assembly includes a backplane; a leveling block coupleable to an equipment front end module (EFEM); a conical hole adjustment assembly coupled between the leveling block and the backplane; and a slotted hole adjustment assembly coupled between the leveling block and the backplane. The conical hole adjustment assembly includes a conical hole block coupled to the leveling block at a first end; a threaded block coupled to the backplane; and an adjustment bolt coupled to the conical hole block and the threaded block. Numerous additional aspects are disclosed.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: January 21, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Paul B. Reuter, Douglas B. Baumgarten
  • Patent number: 10537973
    Abstract: A method of fabricating a polishing pad using an additive manufacturing system includes receiving data indicative of a desired shape of the polishing pad to be fabricated by droplet ejection. The desired shape defines a profile including a polishing surface and one or more grooves on the polishing pad. Data indicative of a modified pattern of dispensing feed material is generated to at least partially compensate for distortions of the profile caused by the additive manufacturing system, and a plurality of layers of the feed material are dispensed by droplet ejection in accordance to the modified pattern.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: January 21, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Mayu Felicia Yamamura, Jason Garcheung Fung, Daniel Redfield, Rajeev Bajaj, Hou T. Ng
  • Patent number: 10541112
    Abstract: A charged particle beam system comprises a particle beam source having a particle emitter at a first voltage, a first electrode downstream of the particle beam source at a second voltage, a multi-aperture plate downstream of the first electrode, a second electrode downstream of the multi-aperture plate at a third voltage, a third electrode downstream of the second electrode at a fourth voltage, a deflector downstream of the third electrode, an objective lens downstream of the deflector, a fourth electrode downstream of the deflector at a fifth voltage; and an object mount at a sixth voltage. Voltage differences between the first, second, third, fourth and fifth voltages have same and opposite signs.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: January 21, 2020
    Assignees: Carl Zeiss Microscopy GmbH, Applied Materials Israel, Ltd.
    Inventors: Stefan Schubert, Thomas Kemen, Rainer Knippelmeyer
  • Patent number: 10541246
    Abstract: 3-d flash memory cells and methods of manufacture are described. The devices and methods recess a compound floating gate in between the silicon oxide slabs which reduces the quantum probability of electron tunneling between vertically adjacent storage cells. The devices and methods further include a high work function nanocrystalline metal in the compound floating gate. A polysilicon buffer layer forms a portion of the compound floating gate. The polysilicon buffer layer allows the high work function nanocrystalline metal to be selectively deposited. The polysilicon buffer layer further protects the high work function nanocrystalline metal from oxidation with the gate oxide subsequently formed on the other side.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: January 21, 2020
    Assignee: Applied Materials, Inc.
    Inventor: Vinod R. Purayath
  • Patent number: 10535502
    Abstract: Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: January 14, 2020
    Assignee: Applied Materials, Inc.
    Inventors: James D. Carducci, Hamid Tavassoli, Ajit Balakrishna, Zhigang Chen, Andrew Nguyen, Douglas A. Buchberger, Jr., Kartik Ramaswamy, Shahid Rauf, Kenneth S. Collins
  • Patent number: 10532441
    Abstract: A flexible membrane for a carrier head of a chemical mechanical polisher includes a main portion, an annular outer portion, and three annular flaps. The main portion has a substrate mounting surface with a radius R. The annular outer portion extends upwardly from an outer edge of the main portion and has a lower edge connected to the main portion and an upper edge. The three annular flaps include a first annular flap joined to an inner surface of the main portion at a radial position between 75% and 95% of R, a second inwardly-extending annular flap joined to the annular outer portion at a position between the lower edge and the upper edge, and a third inwardly-extending annular flap joined to the upper edge of the annular outer portion.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: January 14, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Jeonghoon Oh, Jamie Leighton