Patents Assigned to Applied Materials
  • Patent number: 7521365
    Abstract: In one example, a method of epitaxially forming a silicon-containing material on a substrate surface is presented which includes positioning a substrate into a process chamber. The substrate has a monocrystalline surface and at least a second surface, such as an amorphous surface and/or a polycrystalline surface. The substrate is exposed to a deposition gas to deposit an epitaxial layer on the monocrystalline surface and a polycrystalline layer on the second surface. The deposition gas preferably contains a silicon source and at least a second elemental source, such as a germanium source, a carbon source and/or combinations thereof. Thereafter, the method further provides exposing the substrate to an etchant gas to etch the polycrystalline layer and the epitaxial layer in a manner such that the polycrystalline layer is etched at a faster rate than the epitaxial layer.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: April 21, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Yihwan Kim, Arkadii V. Samoilov
  • Patent number: 7521700
    Abstract: A method for writing a master image on a substrate includes dividing the master image into a matrix of frames, each frame including an array of pixels defining a respective frame image in a respective frame position within the master image. An electron beam is scanned in a raster pattern over the substrate, while shaping the electron beam responsively to the respective frame image of each of the frames as the electron beam is scanned over the respective frame position, so that in each frame, the electron beam simultaneously writes a multiplicity of the pixels onto the substrate.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: April 21, 2009
    Assignee: Applied Materials, Israel, Ltd.
    Inventors: Meir Aloni, Mula Friedman, Jimmy Vishnipolsky, Gilad Almogy, Alon Litman, Yonatan Lehman, Doron Meshulach, Ehud Tirosh
  • Patent number: 7520999
    Abstract: A method for processing a workpiece in a plasma reactor chamber by applying RF source power to inner and outer source power applicators, and introducing a process gas into the reactor while rotating at least one of (a) the workpiece, (b) the outer source power applicator, about a radial tilt axis to a position at which the plasma distribution is nearly symmetrical, and translating the inner source power applicator relative to the outer source power applicator along the axis of symmetry to a location at which the spatial distribution is nearly uniform.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: April 21, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Madhavi R. Chandrachood, Richard Lewington, Darin Bivens, Ajay Kumar, Ibrahim M. Ibrahim, Michael N. Grimbergen, Renee Koch, Sheeba J. Panayil
  • Publication number: 20090098492
    Abstract: A flame sensor apparatus for use with a flame heated thermal abatement reactor is provided, including a flame sensor adapted to sense a flame within the thermal abatement reactor; and a shutter adapted to selectively block the transmission of radiation from the flame to the flame sensor.
    Type: Application
    Filed: October 24, 2008
    Publication date: April 16, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Ho-Man Rodney Chiu, Daniel O. Clark, Shaun W. Crawford, Jay J. Jung, Youssef A. Loldj, Robbert M. Vermeulen
  • Publication number: 20090098293
    Abstract: A coating system or encapsulation module 1 is coupled with a substrate handling module 2, wherein substrates 3a to be encapsulated and substrates 3b that already have an encapsulation layer stack deposited thereon are handled in a nitrogen atmosphere. The substrate handling module 2 comprises a magazine 4 for storing substrates 3a to be coated and encapsulated substrates 3b. A handling device 5 unloads the substrates 3a to be coated from the magazine 4 and loads encapsulated substrates 3b into the magazine 4. The encapsulation module 1 has a first ink-jet coating chamber 10a. In said first ink-jet coating chamber 10a a photoresist layer is deposited on the substrate 3a by means of an ink-jet printing method. The ink-jet printing method is carried out in an atmosphere of about 10 mbar. Then the substrate 3a is transported into a first CVD (chemical vapor deposition) coating chamber 11a. In the CVD coating chamber 11a a first silicon nitride layer is deposited on the substrate 3a, i.e.
    Type: Application
    Filed: October 15, 2007
    Publication date: April 16, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Uwe Hoffmann, Jose Manuel Dieguez-Campo
  • Patent number: 7518094
    Abstract: A method and system for the compensation of nonuniformity among a plurality of light sensing diodes adapted to convert light to a current output. A system embodiment includes a plurality of trans-impedance amplifier circuits, each trans-impedance amplifier circuit having an op-amp, and an impedance connecting an output of the op-amp to a first input of the op-amp, and a plurality of variable voltage source. The current output of each sensing diode is coupled to a corresponding trans-impedance amplifier circuit by an electrical connection to the first input of corresponding op-amp. A second input of the corresponding op-amp is coupled to a corresponding adjustable voltage source. The output of the corresponding op-amp is a signal responsive to a sensing voltage, and to a voltage signal provided by the corresponding adjustable voltage source, the sensing voltage being responsive to the current output of a corresponding sensing diode.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: April 14, 2009
    Assignee: Applied Materials, Israel, Ltd.
    Inventor: Pavel Margulis
  • Patent number: 7517437
    Abstract: A method and apparatus for sputter depositing a film on a substrate is disclosed. By providing a superimposed RF bias over a DC bias, plasma ionization is increased. In order to increase the resistive load across the substrate, an impedance circuit is provided between the substrate and the susceptor. The impedance circuit allows an insulating substrate to effectively function as an anode and connect to ground.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: April 14, 2009
    Assignee: Applied Materials, Inc.
    Inventor: Bassam Shamoun
  • Patent number: 7517775
    Abstract: The invention generally teaches a method for depositing a silicon film or silicon germanium film on a substrate comprising placing the substrate within a process chamber and heating the substrate surface to a temperature in the range from about 600° C. to about 900° C. while maintaining a pressure in the range from about 0.1 Torr to about 200 Torr. A deposition gas is provided to the process chamber and includes SiH4, an optional germanium source gas, an etchant, a carrier gas and optionally at least one dopant gas. The silicon film or the silicon germanium film is selectively and epitaxially grown on the substrate. One embodiment teaches a method for depositing a silicon-containing film with an inert gas as the carrier gas. Methods may include the fabrication of electronic devices utilizing selective silicon germanium epitaxial films.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: April 14, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Yihwan Kim, Arkadii V. Samoilov
  • Patent number: 7517709
    Abstract: A method for fabricating point contacts to the rear surface of a silicon solar cell by coating the rear surface with a masking layer and a laser absorptive layer and directing laser radiation to the rear surface to form openings therein after which doping material is applied through the openings and contacts are applied. The doping is preferably performed by plasma immersion ion implantation.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: April 14, 2009
    Assignee: Applied Materials, Inc.
    Inventor: Peter Borden
  • Patent number: 7518466
    Abstract: Apparatus and methods are provided that are adapted to match the impedance of an electrical load to an impedance of an electrical signal generator. The invention includes providing a plurality of electrical components adapted to collectively match the impedance of the electrical load to the impedance of the electrical signal generator. The electrical components are arranged symmetrically and concentrically about an axis. Additionally, the invention may also include a first connector adapted to electrically couple the electrical signal generator to the electrical components. Additionally, the invention may also include a second connector adapted to electrically couple the load to the electrical components. Numerous other aspects are provided.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: April 14, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Carl Sorensen, John M. White
  • Patent number: 7518142
    Abstract: The present invention concerns a thin-film encapsulation structure for electronic devices with organic substances, especially OLEDs or other organic optoelectronic devices as well as corresponding components and a process for the production with a primary, inorganic barrier layer (5), which is directly arranged on the device or the surface to be encapsulated; a planarization layer (6) arranged on the primary, inorganic barrier layer, the thickness of said planarization layer selected such that it is thicker than the simple value of the distance between highest peak and deepest valley of the surface of the primary barrier layer or the surface of the device under the primary barrier layer or the surface to be encapsulated, as well as a secondary barrier layer (14) arranged on the planarization layer.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: April 14, 2009
    Assignee: Applied Materials GmbH & Co. KG
    Inventors: Uwe Hoffmann, Jose Manuel Dieguez-Campo, Frank Stahr, Klaus Schade
  • Patent number: 7518718
    Abstract: Inspection system and method for high-throughput inspection, the system and method is capable to generate and sense transmitted and/or reflected short duration beams. According to one embodiment of the invention the transmitted and reflected short duration beams are generated and sensed simultaneously thus provide a reflected image and a transmitted image simultaneously. The reflected and transmitted short duration radiation beams are manipulated either in the frequency domain or are distinctly polarized such that they are directed to the appropriate area sensors. According to another aspect of the invention the system changes the manipulation of a short duration beam of radiation to selectively direct the short duration beam to distinct area sensors.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: April 14, 2009
    Assignee: Applied Materials, Israel, Ltd.
    Inventors: Emanuel Elyasaf, Haim Feldman, Simon Yalov, Eitan Lahat
  • Patent number: 7518124
    Abstract: Monotomic dopant ions for ion implantation are supplied from vapour of a species containing plural atoms of the desired dopant. The vapour is fed to a plasma chamber and a plasma produced in the chamber with sufficient energy density to disassociate the vapour species to produce monatomic dopant ions in the plasma for implantation.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: April 14, 2009
    Assignee: Applied Materials, Inc.
    Inventor: Richard David Goldberg
  • Patent number: 7518391
    Abstract: A method and system for defect localization including (i) receiving a test structure that includes at least one conductor that is at least partially covered by an electro-optically active material; (ii) providing an electrical signal to the conductor, so as to charge at least a portion of the conductor; and (iii) imaging the test structure to locate a defect.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: April 14, 2009
    Assignee: Applied Materials, Israel, Ltd.
    Inventors: Moshe Langer, Ehud Tirosh
  • Publication number: 20090093129
    Abstract: Apparatus and methods for distributing gas in a semiconductor process chamber are provided. In an embodiment, a gas distributor for use in a gas processing chamber comprises a body. The body includes a baffle with a gas deflection surface to divert the flow of a gas from a first direction to a second direction. The gas deflection surface comprises a concave surface. The concave surface comprises at least about 75% of the surface area of the gas deflection surface. The concave surface substantially deflects the gas toward a chamber wall and provides decreased metal atom contamination from the baffle so that season times can be reduced.
    Type: Application
    Filed: October 17, 2008
    Publication date: April 9, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Soonam Park, Farhan Ahmad, Hemant P. Mungekar, Sanjay Kamath, Young S. Lee, Siqing Lu
  • Publication number: 20090090883
    Abstract: Embodiments described herein provide a method and apparatus for grounding a chamber isolation valve. In one embodiment, a grounded chamber isolation valve for a plasma processing system is described. The chamber isolation valve includes a door and a bracing member movably attached to and opposing the door, and at least one electrically conductive member in electrical communication with the door, the at least one electrically conductive member comprising one or more reaction bumpers disposed on the bracing member that are adapted to contact at least one grounded component of the plasma processing system when the door is in the closed position.
    Type: Application
    Filed: December 11, 2008
    Publication date: April 9, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Ke Ling Lee, Shinichi Kurita, Emanuel Beer
  • Patent number: 7514125
    Abstract: Methods of making an article having a protective coating for use in semiconductor applications are provided. In certain embodiments, a method of coating an aluminum surface of an article utilized in a semiconductor processing chamber is provided. The method comprises providing a processing chamber; placing the article into the processing chamber; flowing a first gas comprising a carbon source into the processing chamber; flowing a second gas comprising a nitrogen source into the processing chamber; forming a plasma in the chamber; and depositing a coating material on the aluminum surface. In certain embodiments, the coating material comprises an amorphous carbon nitrogen containing layer. In certain embodiments, the article comprises a showerhead configured to deliver a gas to the processing chamber.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: April 7, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Deenesh Padhi, Chiu Chan, Sudha Rathi, Ganesh Balasubramanian, Jianhua Zhou, Karthik Janakiraman, Martin J. Seamons, Visweswaren Sivaramakrishnan, Derek R. Witty, Hichem M'Saad
  • Patent number: 7514936
    Abstract: Method and apparatus for detecting or suppressing electrical arcing or other abnormal change in the electrical impedance of a load connected to a power source. Preferably the load is a plasma chamber used for manufacturing electronic components such as semiconductors and flat panel displays. Arcing is detected by monitoring one or more sensors. Each sensor either responds to a characteristic of the electrical power being supplied by an electrical power source to the plasma or is coupled to the plasma chamber so as to respond to an electromagnetic condition within the chamber. Arcing is suppressed by reducing the power output for a brief period. Then the power source increases its power output, preferably to its original value. If the arcing resumes, the power source repeats the steps of reducing and then restoring the power output.
    Type: Grant
    Filed: October 27, 2007
    Date of Patent: April 7, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Suhail Anwar, Remegio Manacio, Chung-Hee Park, Dong-Kil Yim, Soo Young Choi
  • Patent number: 7514353
    Abstract: Embodiments of the invention generally provide methods of filling contact level features formed in a semiconductor device by depositing a barrier layer over the contact feature and then filing the layer using an PVD, CVD, ALD, electrochemical plating process (ECP) and/or electroless deposition processes. In one embodiment, the barrier layer has a catalytically active surface that will allow the electroless deposition of a metal on the barrier layer. In one aspect, the electrolessly deposited metal is copper or a copper alloy. In one aspect, the contact level feature is filled with a copper alloy by use of an electroless deposition process. In another aspect, a copper alloy is used to from a thin conductive copper layer that is used to subsequently fill features with a copper containing material by use of an ECP, PVD, CVD, and/or ALD deposition process.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: April 7, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Timothy W. Weidman, Kapila P. Wijekoon, Zhize Zhu, Avgerinos V. (Jerry) Gelatos, Amit Khandelwal, Arulkumar Shanmugasundram, Michael X. Yang, Fang Mei, Farhad K. Moghadam
  • Patent number: 7514682
    Abstract: Methods and apparatus to facilitate the measurement of the amount of scattered electrons collected by an anti-fogging baffle arrangement are provided. For some embodiments, by affixing a lead to an electrically isolated (floating) portion of the baffle arrangement, the amount of scattered electrons collected thereby may be read out, for example, as a current signal. Thus, for such embodiments, the baffle arrangement may double as a detector, allowing an image of surface (e.g., a mask or substrate surface) to be generated.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: April 7, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Benyamin Buller, William J. Devore, Juergen Frosien, Richard L. Lozes, Henry Pearce-Percy, Dieter Winkler