Abstract: The invention features an apparatus and a method for supplying ozonated water to more than one process tool. Ozonated water of a first concentration received from an ozonated water generator and water received from a source are mixed to produce ozonated water of a second concentration. The ozonated water of a second concentration is supplied to a first process tool. Ozonated water from the ozonated water generator is supplied to a second process tool while supplying the ozonated water of the second concentration to the first process tool.
Type:
Application
Filed:
April 26, 2002
Publication date:
September 4, 2003
Applicant:
Applied Science & Technology, Inc.
Inventors:
Jens Fittkau, Johannes Seiwert, Christiane Gottschalk
Abstract: An apparatus for dissociating gases includes a plasma chamber that may be formed from a metallic material and a transformer having a magnetic core surrounding a portion of the plasma chamber and having a primary winding. The apparatus also includes one or more switching semiconductor devices that are directly coupled to a voltage supply and that have an output coupled to the primary winding of the transformer. The one or more switching semiconductor devices drive current in the primary winding that induces a potential inside the chamber that forms a plasma which completes a secondary circuit of the transformer.
Type:
Grant
Filed:
May 10, 2002
Date of Patent:
May 6, 2003
Assignee:
Applied Science & Technology, Inc.
Inventors:
Donald K. Smith, Xing Chen, William M. Holber, Eric Georgelis
Abstract: The present invention relates to a composition comprising a nano-emulsion that contains 5-aminolevulinic acid as well as a carrier in an aqueous phase. This invention also relates to a pharmaceutical preparation containing this composition. The nano-emulsions of this type can be used in photodynamic therapy as well as in the photodiagnostic detection of proliferatives cells.
Abstract: An apparatus for dissociating gases includes a plasma chamber that may be formed from a metallic material and a transformer having a magnetic core surrounding a portion of the plasma chamber and having a primary winding. The apparatus also includes one or more switching semiconductor devices that are directly coupled to a voltage supply and that have an output coupled to the primary winding of the transformer. The one or more switching semiconductor devices drive current in the primary winding that induces a potential inside the chamber that forms a plasma which completes a secondary circuit of the transformer.
Type:
Grant
Filed:
September 12, 2000
Date of Patent:
November 26, 2002
Assignee:
Applied Science & Technology, Inc.
Inventors:
Donald K. Smith, Xing Chen, William M. Holber, Eric Georgelis
Abstract: An apparatus for dissociating gases includes a plasma chamber that may be formed from a metallic material and a transformer having a magnetic core surrounding a portion of the plasma chamber and having a primary winding. The apparatus also includes one or more switching semiconductor devices that are directly coupled to a voltage supply and that have an output coupled to the primary winding of the transformer. The one or more switching semiconductor devices drive current in the primary winding that induces a potential inside the chamber that forms a plasma which completes a secondary circuit of the transformer.
Type:
Application
Filed:
May 10, 2002
Publication date:
September 12, 2002
Applicant:
Applied Science & Technology, Inc.
Inventors:
Donald K. Smith, Xing Chen, William M. Holber, Eric Georgelis
Abstract: An apparatus for dissociating gases includes a plasma chamber that may be formed from a metallic material and a transformer having a magnetic core surrounding a portion of the plasma chamber and having a primary winding. The apparatus also includes one or more switching semiconductor devices that are directly coupled to a voltage supply and that have an output coupled to the primary winding of the transformer. The one or more switching semiconductor devices drive current in the primary winding that induces a potential inside the chamber that forms a plasma which completes a secondary circuit of the transformer.
Type:
Application
Filed:
May 10, 2002
Publication date:
September 12, 2002
Applicant:
Applied Science & Technology, Inc.
Inventors:
Donald K. Smith, Xing Chen, William M. Holber, Eric Georgelis
Abstract: A robotic arm assembly in a transport module is expansible to have an effector at its end receive a substrate in a cassette module and is then contracted and rotated with the effector to have the effector face a process module. Planets on a turntable in the process module are rotatable on first parallel axes. The turntable is rotatable on a second axis parallel to the first axes to move successive planets to a position facing the effector. At this position, an alignment assembly is aligned with, but axially displaced from, one of the planets. This assembly is moved axially into coupled relationship with such planet and then rotated to a position aligning the substrate on the effector axially with such planet when the arm assembly is expanded. A lifter assembly aligned with, and initially displaced from, such planet is moved axially to lift the substrate from the effector. The arm assembly is then contracted, rotated with the effector and expanded to receive the next cassette module substrate.
Abstract: A generator cell includes a high voltage assembly having a high voltage electrode, a low voltage assembly having a low voltage electrode, a barrier dielectric between the electrodes defining a discharge region for producing a reactive gas, and a welded seal joining the assemblies to create a permanently sealed chamber between the assemblies including the discharge region. The generator cell may have a gap in the discharge region of 0.005 inch or less. The cells may be modularly combined to form a reactive gas generator system.
Abstract: A microwave plasma generator for producing an axisymmetric plasma, having a waveguide apparatus, means for introducing a microwave source into the waveguide apparatus, and means for generating a circular axisymmetric microwave field from the microwave source. There are means for tuning the field to match the impedance of a plasma load. Further included is a vacuum chamber for containing a gas to be ionized to form the plasma, means for introducing this gas into the vacuum chamber, and means for coupling the microwave field to the vacuum chamber to form the plasma.
Abstract: A microwave reactive gas generator including a microwave power source with a waveguide coupled to the power source for transmitting microwave radiation. A cavity for establishing a microwave mode is attached to the waveguide, and there is passage tube through the cavity transverse to the direction of propagation of the microwave radiation in the waveguide for passing the gas to be excited through the cavity. The generator also includes a device for matching the impedance of the load to the microwave power source. The cavity couples the microwave power from the waveguide to the passage to energize the gas into a reactive state.