Abstract: A lithographic method includes controlling a phase adjuster of a lithographic apparatus, the phase adjuster being constructed and arranged to adjust a phase of an electric field of a radiation beam traversing an optical element of the phase adjuster, and controlling a signal provided to the phase adjuster that results in an actual time-temperature characteristic of a portion of the optical element, the control being undertaken with reference to a desired time-temperature characteristic of a portion of the optical element, the control of the signal being such that a change in the actual time-temperature characteristic precedes a related change in the desired time-temperature characteristic.
Abstract: Alignment marks for use on substrates. In one example, the alignment marks consist of periodic 2-dimensional arrays of structures, the spacing of the structures being smaller than an alignment beam but larger than an exposure beam.
Type:
Grant
Filed:
June 1, 2006
Date of Patent:
May 17, 2011
Assignee:
ASML Netherlands B.V.
Inventors:
Richard Johannes Franciscus Van Haren, Sami Musa
Abstract: A method of aligning an imprint template with respect to a target region of a substrate is disclosed, the method including depositing a volume of an imprintable medium within the target region; contacting an imprint template to the imprintable medium so that the imprintable medium is compressed and allowing the imprint template, the target region, or both, to move laterally with respect to each other under interfacial tension forces between the target region and the imprint template, wherein a material which is less wetting than the substrate is provided in a configuration which at least partially surrounds the target region of the substrate.
Type:
Grant
Filed:
December 23, 2005
Date of Patent:
May 17, 2011
Assignee:
ASML Netherlands B.V.
Inventors:
Johan Frederik Dijksman, Raymond Jacobus Knaapen, Krassimir Todorov Krastev, Sander Frederik Wuister, Yvonne Wendela Kruijt-Stegeman, Ivar Schram
Abstract: End of line effect can occur during manufacture of components using a lithographic apparatus. These end of line effects can result in line end shortening of the features being manufactured. Such line end shortening may have an adverse impact on the component being manufactured. It is therefore desirable to predict and/or monitor the line end shortening. A test pattern is provided that has two separate areas such that, as designed, when the two areas are illuminated with radiation (for example from an angle-resolved scatterometer) they result in diffused radiation with asymmetry that is equal in sign to each other, but opposite in magnitude. When the test pattern is actually manufactured, line end shortening occurs, and so the asymmetry of the two areas are not equal and opposite. From the measured asymmetry of the manufactured test pattern, the amount of line end shortening that has occurred can be estimated.
Type:
Application
Filed:
April 22, 2009
Publication date:
May 12, 2011
Applicant:
ASML Netherlands B.V.
Inventors:
Maurits Van Der Schaar, Arie Jeffrey Den Boef, Richard Johannes Franciscus Van Haren, Marcus Adrianus Van De Kerkhof
Abstract: A method is provided for positioning at least one target portion of a substrate with respect to a focal plane of a projection system. The method comprises performing height measurements of at least part of the substrate to generate height data, using predetermined correction heights to compute corrected height data for the height data. The method further comprises positioning the target portion of the substrate with respect to the focal plane of the projection system at least partially based on the corrected height data.
Type:
Application
Filed:
October 5, 2010
Publication date:
May 12, 2011
Applicant:
ASML Netherlands B.V.
Inventors:
CORNELIS HENRICUS VAN DE VIN, RALPH BRINKHOF, ARTHUR WINFRIED EDUARDUS MINNAERT, ALEX VAN ZON
Abstract: A source module for use in a lithographic apparatus is constructed to generate extreme ultra violet (EUV) and secondary radiation, and includes a buffer gas configured to cooperate with a source of the EUV radiation. The buffer gas has at least 50% transmission for the EUV radiation and at least 70% absorption for the secondary radiation.
Type:
Application
Filed:
July 13, 2009
Publication date:
May 12, 2011
Applicant:
ASML Netherlands B.V.
Inventors:
Maarten Marinus Johannes Wilhelmus Van Herpen, Wouter Anthon, Andrei Mikhailovich Yakunin
Abstract: A substrate support, configured to support a substrate during a process within a lithography system, includes a lifting structure configured to move the substrate between a first position, in which a lifting face of the lifting structure supports the substrate at a position set apart from a support surface of the substrate support, and a second position, in which the lifting structure does not prevent the substrate from being supported by a support surface of the substrate support; wherein, in moving between the first and second positions, the substrate moves in a combination of movement substantially perpendicular to a plane parallel to the support surface and movement substantially parallel to the support surface.
Type:
Application
Filed:
April 23, 2009
Publication date:
May 12, 2011
Applicant:
ASML Netherlands B.V.
Inventors:
Olav Johannes Seijger, Martinus Joseph Kok, Sander Kerssemakers
Abstract: A method and apparatus for cleaning the inside of an immersion lithographic apparatus is disclosed. In particular, a liquid supply system of the lithographic apparatus may be used to introduce a cleaning fluid into a space between the projection system and the substrate table of the lithographic apparatus. Additionally or alternatively, a cleaning device may be provided on the substrate table and an ultrasonic emitter may be provided to create an ultrasonic cleaning liquid.
Type:
Application
Filed:
January 7, 2011
Publication date:
May 12, 2011
Applicant:
ASML NETHERLANDS B.V.
Inventors:
Hans Jansen, Johannes Jacobus Matheus Baselmans, Sjoerd Nicolaas Lambertus Donders, Christiaan Alexander Hoogendam, Jeroen Johannes Sophia Maria Mertens, Johannes Catharinus Hubertus Mulkens, Marco Koert Stavenga, Bob Streefkerk, Jan Cornelis Van Der Hoeven, Cedric Desire Grouwstra
Abstract: The X, Y and Rz positions of a mask stage are measured using two optical encoder-reading heads measuring displacements of respective grid gratings mounted on the mask stage. The grid gratings are preferably provided on cut-away portions of the mask table so as to be coplanar with the pattern on the mask itself. Measurements of the table position in the other degrees of freedom can be measured with capacitive or optical height sensors.
Abstract: An electrostatic clamp for use in a lithographic apparatus includes a layer of material provided with burls, wherein an electrode surrounded by an insulator and or a dielectric material is provided in between the burls. The electrostatic clamp may be used to clamp an object to an object support in a lithographic apparatus.
Abstract: A focus sensor comprises a confocal sensor. Within the confocal sensor there are a plurality of aperture plates positioned in front of a plurality of detectors. Rather than a conventional pinhole aperture shape there is a central aperture surrounded by a plurality of outer aperture portions.
Abstract: The present invention relates generally to selecting optimum patterns based on diffraction signature analysis, and more particularly to, using the optimum patterns for mask-optimization for lithographic imaging. A respective diffraction map is generated for each of a plurality of target patterns from an initial larger set of target patterns from the design layout. Diffraction signatures are identified from the various diffraction maps. The plurality of target patterns is grouped into various diffraction-signature groups, the target patterns in a specific diffraction-signature group having similar diffraction signature. A subset of target patterns is selected to cover all possible diffraction-signature groups, such that the subset of target patterns represents at least a part of the design layout for the lithographic process. The grouping of the plurality of target patterns may be governed by predefined rules based on similarity of diffraction signature.
Type:
Application
Filed:
October 28, 2010
Publication date:
May 5, 2011
Applicant:
ASML Netherlands B.V.
Inventors:
Hua-Yu Liu, Luoqi Chen, Hong Chen, Zhi-Pan Li
Abstract: A method is disclosed. A change in position of a substrate in a direction substantially parallel to a direction of propagation of a radiation beam that is, or is to be, projected on to that substrate is determined, which change in position would result in a lithographic error in the application of a pattern to that substrate using that radiation beam. The change in position of the substrate is used to control a property of the radiation beam when, or as, the radiation beam is projected onto the substrate in order to reduce the lithographic error.
Type:
Application
Filed:
October 4, 2010
Publication date:
May 5, 2011
Applicant:
ASML Netherlands B. V.
Inventors:
Hans BUTLER, Remco Jochem Sebastiaan Groenendijk
Abstract: Data from the piezo-electric sensors in the mounts for the projection system can be used in the control loops for other parts of the lithographic apparatus, for example the mask table, the substrate table or the air mounts for the frame bearing the projection system. Information from, for example, a geophone, which is used to measure the absolute velocity of the frame bearing the projection system, can be used in the control loop for the piezo-electric actuator in the mount for the projection system.
Abstract: In a lithographic apparatus, a localized area of the substrate surface under a projection system is immersed in liquid. The height of a liquid supply system above the surface of the substrate can be varied using actuators. A control system uses feedforward or feedback control with input of the surface height of the substrate to maintain the liquid supply system at a predetermined height above the surface of the substrate.
Type:
Grant
Filed:
February 7, 2008
Date of Patent:
May 3, 2011
Assignee:
ASML Netherlands B.V.
Inventors:
Bob Streefkerk, Johannes Jacobus Matheus Baselmans, Henrikus Herman Marie Cox, Antonius Theodorus Anna Maria Derksen, Sjoerd Nicolaas Lambertus Donders, Christiaan Alexander Hoogendam, Joeri Lof, Erik Roelof Loopstra, Jeroen Johannes Sophia Maria Mertens, Frits Van Der Meulen, Johannes Catharinus Hubertus Mulkens, Gerardus Petrus Matthijs Van Nunen, Klaus Simon, Bernardus Antonius Slaghekke, Alexander Straaijer, Jan-Gerard Cornelis Van Der Toorn, Martijn Houkes
Abstract: A system and method are used to compensate for distortions or aberrations in an image formed in a projection system. Pattern data is generated corresponding to features to be formed on a substrate. At least one of aberrations and distortions of a projection optical system are measured. The pattern data is altered based on the measuring step. The altered pattern data is transmitted to a patterning device to control individually controllable elements coupled to the patterning device. Non uniformities in one or both of a field and pupil of an illumination system can also be measured and used to alter the pattern data.
Abstract: A masking apparatus for preventing irradiation of an outer region of a substrate during lithography is disclosed. The masking apparatus includes a mask that includes a plurality of discrete segments arranged to form a continuous ring shaped mask positioned between an outer region of a substrate and an illumination system.
Abstract: An optical apparatus includes an illumination system configured to form a pulsed radiation beam, an optical element with a surface on which the radiation beam is incident in operation, and a gas source arranged to supply a mixture of a first type of gas and a second type of gas to a space adjacent the surface. Particles of the first and second types of gas are capable of reacting with the surface, when activated by the radiation beam. The gas source is configured to generate a combination of surface occupation numbers of molecules of the first and second types of gas on the surface under operating conditions, at least prior to pulses of the radiation beam, the combination of surface occupation numbers lying in a range in which reactions of particles with the surface during pulses of the radiation beam are in majority reversed.
Type:
Grant
Filed:
December 22, 2006
Date of Patent:
May 3, 2011
Assignee:
ASML Netherlands B.V.
Inventors:
Johannes Hubertus Josephina Moors, Vadim Yevgenyevich Banine, Bastiaan Theodoor Wolschrijn, Carolus Ida Maria Antonius Spee, Rik Jansen
Abstract: The present invention relates to lithographic apparatuses and processes, and more particularly to tools for optimizing illumination sources and masks for use in lithographic apparatuses and processes. According to certain aspects, the present invention enables full chip pattern coverage while lowering the computation cost by intelligently selecting a small set of critical design patterns from the full set of clips to be used in source and mask optimization. Optimization is performed only on these selected patterns to obtain an optimized source. The optimized source is then used to optimize the mask (e.g. using OPC and manufacturability verification) for the full chip, and the process window performance results are compared. If the results are comparable to conventional full-chip SMO, the process ends, otherwise various methods are provided for iteratively converging on the successful result.
Abstract: Optical elements such as multilayered EUV mirrors are provided with protective capping layers of diamond-like carbon (C), boron nitride (BN), boron carbide (B4C), silicon nitride (Si3N4), silicon carbide (SiC), B, Pd, Ru, Rh, Au, MgF2, LiF, C2F4 and TiN and compounds and alloys thereof. The final period of a multilayer coating may also be modified to provide improved protective characteristics.