Patents Assigned to Axcelis Technologies
-
Patent number: 6768084Abstract: A system and a method for thermally processing a semiconductor substrate are disclosed which provide a heater chamber and a process chamber environmentally isolated from one another by a thermally-transparent plate. A heater assembly situated within the heater chamber comprises one or more quasi-continuous heater elements, and is operable to linearly translate with respect to the process chamber by a linear translation assembly. Thermal radiation is transmitted from the heater elements through the plate toward a substrate situated within the process chamber, wherein one or more temperature sensors measure a temperature associated with one or more respective locations on the substrate. A controller coupled to the one or more temperature sensors, heater assembly, and linear translation assembly controls the thermal radiation emitted by the heater assembly, as well as a distance between the heater assembly and the substrate, wherein the control is based on the one or more measured temperatures.Type: GrantFiled: September 30, 2002Date of Patent: July 27, 2004Assignee: Axcelis Technologies, Inc.Inventors: Yong Liu, Jeff P. Hebb
-
Patent number: 6768121Abstract: An ion source (10) for an ion implanter is provided, comprising: (i) an ionization chamber (14) defined at least partially by chamber walls (12), and having an inlet (45) into which a sputtering gas may be injected and an aperture (18) through which an ion beam (B) may be extracted: (ii) an ionizing electron source (44) for ionizing the sputtering gas to form a sputtering plasma; and (iii) a sputterable repeller (100). The sputterable repeller both (a) repels electrons emitted by the electron source, and (b) provides a source of sputtered material that can be ionized by the electron source. the sputterable repeller (100) comprises a slug (108) of sputterable material, and further comprises mounting structure (102, 104) for removably mounting the slug within the ionization chamber (14), so that the slug is made removably detachable from the mounting structure.Type: GrantFiled: March 11, 2003Date of Patent: July 27, 2004Assignee: Axcelis Technologies, Inc.Inventors: Thomas N. Horsky, Tommy D. Hollingsworth
-
Method and apparatus for micro-jet enabled, low-energy ion generation transport in plasma processing
Patent number: 6761796Abstract: A method for creating and transporting low-energy ions for use in plasma processing of a semiconductor wafer is disclosed. In an exemplary embodiment of the invention, the method includes generating plasma from a gas species to produce a plasma exhaust. The plasma exhaust is then introduced into a processing chamber containing the wafer. The ion content of the plasma exhaust is enhanced by activating a supplemental ion source as the plasma is introduced into the processing chamber, thereby creating a primary plasma discharge therein. Then, the primary plasma discharge is directed into a baffle plate assembly, thereby creating a secondary plasma discharge exiting the baffle plate assembly. The strength of an electric field exerted on ions contained in the secondary plasma discharge is reduced. In so doing, the reduced strength of the electric field causes the ions to bombard the wafer at an energy insufficient to cause damage to semiconductor devices formed on the wafer.Type: GrantFiled: July 13, 2001Date of Patent: July 13, 2004Assignee: Axcelis Technologies, Inc.Inventors: Aseem Kumar Srivastava, Herbert Harold Sawin, Palanikumaran Sakthievel -
Patent number: 6759665Abstract: An apparatus and method for providing a low energy, high current ion beam for ion implantation applications are disclosed. The apparatus includes a mass analysis magnet mounted in a passageway along the path of an ion beam, and a magnetic device adapted to provide a multi-cusped magnetic field in the passageway, which may include a plurality of magnets mounted along at least a portion of the passageway. The magnets may cooperatively interact to provide a multi-cusped magnetic field along at least a portion of the passageway. The multi-cusped magnetic field may be superimposed on the dipole field at a specified field strength in a region of the mass analyzer passageway for a given low energy ion beam. The invention thus provides enhancement of beam plasma within a mass analyzer dipole magnetic field for low energy ion beams without the introduction of externally generated plasma.Type: GrantFiled: May 24, 2001Date of Patent: July 6, 2004Assignee: Axcelis Technologies, Inc.Inventors: Victor M. Benveniste, William F. DiVergilio, John Z. Ye
-
Patent number: 6759098Abstract: Low dielectric constant film materials with improved elastic modulus. The method of making such film materials involves providing a porous methyl silsesquioxane based dielectric film material produced from a resin molecule containing at least 2 Si—CH3 groups and plasma curing the porous film material to convert the film into porous silica. Plasma curing of the porous film material yields a film with improved modulus and outgassing properties. The improvement in elastic modulus is typically greater than or about 100%, and more typically greater than or about 200%. The plasma cured porous film material can optionally be annealed. The annealing of the plasma cured film may reduce the dielectric constant of the film while maintaining an improved elastic modulus as compared to the plasma cured porous film material. The annealed, plasma cured film has a dielectric constant between about 1.1 and about 2.4 and an improved elastic modulus.Type: GrantFiled: July 16, 2001Date of Patent: July 6, 2004Assignees: Axcelis Technologies, Inc., Chemat Technology, Inc.Inventors: Qingyuan Han, Carlo Waldfried, Orlando Escorcia, Ralph Albano, Ivan L. Berry, III, Jeff Jang, Ian Ball
-
Patent number: 6756085Abstract: Low dielectric constant materials with improved elastic modulus and material hardness. The process of making such materials involves providing a dielectric material and ultraviolet (UV) curing the material to produce a UV cured dielectric material. UV curing yields a material with improved modulus and material hardness. The improvement is each typically greater than or about 50%. The UV cured dielectric material can optionally be post-UV treated. The post-UV treatment reduces the dielectric constant of the material while maintaining an improved elastic modulus and material hardness as compared to the UV cured dielectric material. UV cured dielectrics can additionally exhibit a lower total thermal budget for curing than for furnace curing processes.Type: GrantFiled: July 21, 2003Date of Patent: June 29, 2004Assignee: Axcelis Technologies, Inc.Inventors: Carlo Waldfried, Qingyuan Han, Orlando Escorcia, Ivan L. Berry, III
-
Patent number: 6753506Abstract: A method and apparatus for thermal processing of a workpiece reduces the time taken for a processing gas to be purged, or switched, during one or more processing steps for thermal processing systems. The thermal processing system includes a heating chamber in accordance with one example embodiment of the present invention. A small-volume workpiece enclosure is disposed about the workpiece. A translation mechanism, e.g., in the form of a positioning assembly, supports the small-volume workpiece enclosure for moving the small-volume workpiece enclosure and the workpiece within the heating chamber. The small-volume workpiece enclosure enables the use of relatively smaller amounts of process (ambient) gases, and decreases the purge time of such gases. The heating chamber can have at least one of a thermal radiation intensity gradient and a temperature gradient for thermally processing the workpiece. The heating chamber can have one or more heating elements disposed about the heating chamber.Type: GrantFiled: August 23, 2001Date of Patent: June 22, 2004Assignee: Axcelis TechnologiesInventors: Yong Liu, Jeffrey P. Hebb, William Francis Drislane
-
Publication number: 20040113089Abstract: An apparatus and process for measuring light intensities includes the use of a probe. The probe is configured for monitoring a wavelength range from about 180 nanometers to about 270 nanometers (nm). The probe comprises a reflective and diffusive layer adapted for collecting light; a waveguide having one end in optical communication with the reflective and diffusive layer, wherein the waveguide has greater than about 50 percent transmission at wavelengths of about 180 nm to about 270 nm; a sensor probe in optical communication with the other end of the waveguide; and a filter intermediate to the waveguide and the sensor, wherein the filter is adapted to remove wavelengths greater than about 270 nm and has a percent transmission at wavelengths of about 180 nm to about 270 nm greater than about 50 percent.Type: ApplicationFiled: December 16, 2002Publication date: June 17, 2004Applicant: AXCELIS TECHNOLOGIES, INC.Inventors: Alan C. Janos, Betty Zhang
-
Publication number: 20040099283Abstract: A method for drying and removing contaminants from a low-k dielectric film of an integrated circuit wafer, the method comprising exposing the low k dielectric layer to photons; and simultaneously with, prior to, or subsequent to the photon exposure, exposing the substrate to a process effective to remove the contaminants without causing degradation of the low k dielectric layer, wherein the process is selected from the group consisting of a heat process, a vacuum process, an oxygen free plasma process, and combinations thereof.Type: ApplicationFiled: November 26, 2002Publication date: May 27, 2004Applicant: Axcelis Technologies, Inc.Inventors: Carlo Waldfried, Qingyaun Han, John Hallock, Ivan Berry, Ari Margolis, Orlando Escorcia
-
Publication number: 20040100110Abstract: An end effector for installation on a robotic arm for transporting a plurality of semiconductor wafers from one location to another features a ceramic end effector body portion that includes a plurality of wafer engaging fingers that each feature wafer support pads. The wafer support pads are adapted to support a semiconductor wafer surface, and at least one of the support pads has a vacuum orifice. The body portion features an interior vacuum passageway having a first end that is adapted to connect to a vacuum source and a second end that terminates at the vacuum orifices such that a reduced gas pressure at the first end causes a vacuum to be exerted at the vacuum orifices. The interior passageway is formed from a groove in the end effector body portion and an end effector backplate that is sealingly connected to the end effector body portion to completely cover the groove from the first end to the second end. The ceramic body portion can be made of alumina or silicon carbide.Type: ApplicationFiled: November 26, 2002Publication date: May 27, 2004Applicant: Axcelis Technologies, Inc.Inventors: Paul W. Baumann, Michel Pharand, Donald N. Polner
-
Patent number: 6740894Abstract: An ion beam implanter includes an ion beam source for generating an ion beam moving along a beam line and a vacuum or implantation chamber wherein a workpiece is positioned to intersect the ion beam for ion implantation of a surface of the workpiece by the ion beam. The ion beam implanter further includes a workpiece support structure coupled to the implantation chamber and supporting the workpiece. The workpiece support structure includes a rotation member rotatably affixed to the implantation chamber. Rotation of the rotation member with respect to the implantation chamber changes an implantation angle of the workpiece with respect to the portion of the ion beam beam line within the implantation chamber. The workpiece support structure further includes a translation member disposed within the implantation chamber, movably coupled to the rotation member and supporting the workpiece for linear movement along a path of travel. The translation member includes a linear motor.Type: GrantFiled: February 21, 2003Date of Patent: May 25, 2004Assignee: Axcelis Technologies, Inc.Inventor: Robert J. Mitchell
-
Patent number: 6735378Abstract: A thermal device with a container having a surface exposed to the substrate, wherein the container further has a heat source and a plurality of thermal shields situated between the surface exposed to the substrate and the heat source. The thermal shields are spaced from one another by a predetermined distance defining one or more gaps therebetween, wherein the predetermined distance is associated with a mean free path of a gas residing therein. Alternatively, the predetermined distance is variable. A pressure of a gas residing within the one or more gaps is controlled, wherein the pressure of the gas switches the thermal conductivity of the gas between generally conductive and generally non-conductive.Type: GrantFiled: May 29, 2003Date of Patent: May 11, 2004Assignee: Axcelis Technologies, Inc.Inventors: Peter L. Kellerman, Frederick M. Carlson
-
Patent number: 6734120Abstract: A method of enabling the removal of fluorine containing residue from a semiconductor substrate comprising applying a gas and/or vapor to which the residue is reactive to the residue while the temperature of the substrate is at an elevated level with respect to ambient temperature and the residue is exposed to ultraviolet radiation, for a time period which is sufficient to effect at least one of volatilizing the residue or rendering the residue hydrophilic enough to be removable with deionized water.Type: GrantFiled: February 17, 2000Date of Patent: May 11, 2004Assignee: Axcelis Technologies, Inc.Inventors: Ivan Berry, Stuart Rounds, John Hallock, Michael Owens, Mahmoud Dahimene
-
Patent number: 6710360Abstract: An ion beam implanter includes an ion beam source for generating an ion beam moving along a beam line and a vacuum or implantation chamber wherein a workpiece is positioned to intersect the ion beam for ion implantation of a surface of the workpiece by the ion beam. The ion beam implanter further includes a workpiece support structure coupled to the implantation chamber and supporting the workpiece. The workpiece support structure includes a rotation member rotatably affixed to the implantation chamber. Rotation of the rotation member with respect to the implantation chamber changes an implantation angle of the workpiece with respect to the portion of the ion beam beam line within the implantation chamber. The workpiece support structure further includes a translation member movably coupled to the rotation member and supporting the workpiece for linear movement along a path of travel.Type: GrantFiled: July 10, 2002Date of Patent: March 23, 2004Assignee: Axcelis Technologies, Inc.Inventor: Joseph Ferrara
-
Patent number: 6709807Abstract: A process for reducing roughness from a surface of a patterned photoresist. The process includes exposing a substrate having the patterned photoresist thereon to a vapor, wherein the vapor penetrates into and/or reacts with the surface of the photoresist. The substrate having the patterned photoresist thereon is then heated to a temperature and for a time sufficient to cause the surface of the photoresist to flow and/or react with the vapor wherein the surface roughness decreases. Optionally, the substrate is exposed to radiation during the process to increase the etch resistance of the photoresist and/or facilitate the reaction of the vapor with the surface of the photoresist.Type: GrantFiled: October 9, 2002Date of Patent: March 23, 2004Assignee: Axcelis Technologies, Inc.Inventors: John S. Hallock, Robert D. Mohondro
-
Patent number: 6695886Abstract: The present invention is directed to a pyrometer system and comprises an elevator tube. The elevator tube comprises an inner tube and an outer tube surrounding the inner tube in telescoping arrangement and extending from a top to a bottom thereof, the arrangement defining a fluid passageway therebetween. The elevator tube further comprises a port associated with the outer tube that is operable to transmit a cooling gas therethrough into the fluid passageway. A pyrometer head is coupled to the bottom of the inner tube and is operable to transmit and receive radiation through the inner tube. The system further comprises a spider collar coupled to at least one of a top of the inner tube or outer tube, and is operable to support a work piece for thermal measurement thereof.Type: GrantFiled: August 22, 2002Date of Patent: February 24, 2004Assignee: Axcelis Technologies, Inc.Inventors: Douglas Brown, Robert David Meadows, David Tao, Mathias Koch
-
Publication number: 20040021092Abstract: An ion beam implanter includes an ion beam source for generating an ion beam moving along a beam line and an implantation chamber wherein a workpiece is positioned to intersect the ion beam for ion implantation of a surface of the workpiece by the ion beam. The ion beam implanter further includes a workpiece support structure coupled to the implantation chamber and supporting the workpiece. The workpiece support structure includes a first rotation member rotatably coupled to the implantation chamber and including an opening extending through the rotation member and aligned with an opening in a wall of the implantation chamber. The workpiece support structure further includes a second rotation member rotatably coupled to the first rotation member and having an axis of rotation offset from an axis of rotation of the first rotation member, the second rotation member overlying the opening of the first rotation member.Type: ApplicationFiled: July 28, 2003Publication date: February 5, 2004Applicant: Axcelis Technologies, Inc.Inventor: Joseph Ferrara
-
Publication number: 20040007678Abstract: An ion beam implanter includes an ion beam source for generating an ion beam moving along a beam line and a vacuum or implantation chamber wherein a workpiece is positioned to intersect the ion beam for ion implantation of a surface of the workpiece by the ion beam. The ion beam implanter further includes a workpiece support structure coupled to the implantation chamber and supporting the workpiece. The workpiece support structure includes a rotation member rotatably affixed to the implantation chamber. Rotation of the rotation member with respect to the implantation chamber changes an implantation angle of the workpiece with respect to the portion of the ion beam beam line within the implantation chamber. The workpiece support structure further includes a translation member movably coupled to the rotation member and supporting the workpiece for linear movement along a path of travel.Type: ApplicationFiled: July 10, 2002Publication date: January 15, 2004Applicant: Axcelis Technologies, Inc.Inventor: Joseph Ferrara
-
Patent number: 6677598Abstract: The present invention facilitates semiconductor device fabrication by monitoring uniformity of beam current and angle of incidence at various locations throughout an ion beam (e.g., a wider portion of a ribbon beam). One or more uniformity detectors are employed within an ion implantation system (e.g., single wafer based system and/or a multiple wafer based system) and are comprised of a number of elements. The respective elements comprise an aperture that selectively obtains a beamlet from an incident ion beam and a pair of sensors that measure beam current as a function of the incoming angle of the ion beam. The angle of incidence at for particular elements can be determined at least partially from the measured beam current by the pairs of sensors. As a result, generation of an ion beam can be adjusted to improve uniformity as indicated and ion implantation can be performed with an improved uniformity and under tighter process controls.Type: GrantFiled: April 29, 2003Date of Patent: January 13, 2004Assignee: Axcelis Technologies, Inc.Inventor: Victor M. Benveniste
-
Patent number: 6673197Abstract: A method and apparatus for generating a plasma in a gas using a thermal source and a heat source in a common reaction zone. A process gas is flowed to a reaction zone and heated with a thermal energy source. Within the same reaction zone, a current is passed in the gas to generate a plasma within the gas. The plasma is directed to a substrate for treatment. The substrate may be a silicon wafer as part of an etching, ashing, wafer cleaning, and chemical vapor deposition.Type: GrantFiled: January 3, 2003Date of Patent: January 6, 2004Assignee: Axcelis Technologies, Inc.Inventors: Joel Penelon, Ivan Berry