Abstract: An ion source is disclosed for ion implantation applications, having control apparatus for selectively adjusting a density profile associated with an elongated ion beam being extracted from a plasma confinement chamber. The control apparatus comprises a plurality of magnet pairs proximate an elongated extraction exit through which a ribbon beam is extracted from the ion source, with the magnet pairs individually comprising upper and lower electro-magnets disposed above and below the extraction exit opening to provide adjustable magnetic fields in a pre-extraction region so as to adjust the density profile of an extracted ribbon beam.
Abstract: A loadlock chamber assembly includes a loadlock chamber, a sub-chamber removably attached to the loadlock chamber and a first robot arm having a primary pivot axis within the sub-chamber, wherein the first robot arm can move a substrate from a position approximately in a center of the loadlock chamber to a position outside the loadlock chamber.
Type:
Grant
Filed:
July 13, 2001
Date of Patent:
December 16, 2003
Assignee:
Axcelis Technologies, Inc.
Inventors:
David William Kinnard, Daniel Richardson
Abstract: A dielectric barrier discharge apparatus for treating a substrate includes a first planar electrode; a dielectric layer disposed on a surface of the first planar electrode; a porous planar electrode spaced above and in a parallel plane with the dielectric layer, wherein the porous planar electrode has a geometric transmission factor greater than 70 percent; and a power supply in electrical communication with the first electrode and the second electrode. A process for treating a substrate includes exposing the substrate surface to reactants produced by the dielectric barrier discharge apparatus.
Type:
Grant
Filed:
June 21, 2002
Date of Patent:
December 16, 2003
Assignee:
Axcelis Technologies, Inc.
Inventors:
Ivan Berry, Alan C. Janos, Michael Bruce Colson
Abstract: An ion source is disclosed having an elongated slit for providing a ribbon ion beam for use in an ion implantation system. The source comprises a coaxial inductive coupling antenna for RF excitation of plasma within a cylindrical source housing, as well as circumferential magnets disposed within the housing for generating azimuthal multi-cusped magnetic fields for plasma confinement. Also disclosed is a liner for the housing interior providing thermal barrier between the plasma and the outer housing wall so as to mitigate or reduce condensation within the plasma confinement chamber.
Type:
Grant
Filed:
July 31, 2002
Date of Patent:
December 16, 2003
Assignee:
Axcelis Technologies, Inc.
Inventors:
Victor M. Benveniste, William F. DiVergilio
Abstract: The invention provides a method and system for determining a pressure compensation factor for use in an ion implanter, which uses one or a small number of test workpieces. The method includes providing a test workpiece in the ion implantation system, wherein the test workpiece has at least one band region, assuming a predicted pressure compensation factor, implanting the at least one band region of the test workpiece with an ion beam using the ion implantation system and the predicted pressure compensation factor while measuring ion beam current and a pressure in the ion implantation system, measuring a sheet resistance associated with the implanted test workpiece, and determining a pressure compensation factor according to the predicted pressure compensation factor, the measured sheet resistance, the measured ion beam current, and the measured pressure.
Abstract: An integrated RF amplifier and resonator is provided for use with an ion accelerator. The amplifier includes an output substantially directly coupled with a resonator coil. The amplifier output may be coupled capacitively or inductively. In addition, an apparatus is provided for accelerating ions in an ion implanter. The apparatus comprises an amplifier with an RF output, a tank circuit with a coil substantially directly coupled to the RF output of the amplifier, and an electrode connected to the coil for accelerating ions. Also provided is a method for coupling an RF amplifier with a resonator in an ion accelerator. The method comprises connecting the RF output of the amplifier to a coupler, and locating the coupler proximate the coil, thereby substantially directly coupling the RF output of the amplifier with the resonator coil.
Type:
Grant
Filed:
May 30, 2000
Date of Patent:
November 25, 2003
Assignee:
Axcelis Technologies, Inc.
Inventors:
William F. DiVergilio, Kourosh Saadatmand, Ernst F. Scherer
Abstract: A method and apparatus are disclosed for accelerating ions in an ion implantation system. An ion accelerator is provided which comprises a plurality of energizable electrodes energized by a variable frequency power source, in order to accelerate ions from an ion source. The variable frequency power source allows the ion accelerator to be adapted to accelerate a wide range of ion species to desired energy levels for implantation onto a workpiece, while reducing the cost and size of an ion implantation accelerator.
Type:
Grant
Filed:
December 26, 2001
Date of Patent:
November 25, 2003
Assignee:
Axcelis Technologies, Inc.
Inventors:
Kourosh Saadatmand, William F. DiVergilio
Abstract: A method for stripping photoresist and/or removing post etch residues from an exposed low k dielectric layer of a semiconductor wafer in the presence or absence of copper. The method comprises creating an oxygen free plasma by subjecting an oxygen free gas to an energy source to generate the plasma having electrically neutral and charged particles. The charged particles are then selectively removed from the plasma. The electrically neutral particles react with the photoresist and/or post etch residues to form volatile gases which are then removed from the wafer by a gas stream. The oxygen free, plasma gas composition for stripping photoresist and/or post etch residues comprises a hydrogen bearing gas and a fluorine bearing wherein the fluorine bearing gas is less than about 10 percent by volume of the total gas composition.
Abstract: An ion buncher stage for a linear accelerator system is disclosed for bunching ions in an ion implantation system. The ion buncher stage may be employed upstream of one or more accelerating stages such that the loss of ions in the linear accelerator system is reduced. The invention further includes an asymmetrical double gap buncher stage, as well as a slit buncher stage for further improvement of ion implantation efficiency. Also disclosed are methods for accelerating ions in an ion implanter linear accelerator.
Type:
Grant
Filed:
August 21, 2002
Date of Patent:
October 21, 2003
Assignee:
Axcelis Technologies, Inc.
Inventors:
Kourosh Saadatmand, William F. DiVergilio
Abstract: A plasma processing system is provided, having processor integral cooling passages for reducing an operating temperature thereof during processing of a wafer by the system. Cooling medium inlets and outlets are connected to the cooling passages to permit circulation of a cooling medium through the cooling passages. The baffle plate comprises a generally planar, apertured, gas distribution central portion surrounded by a flange into both of which the cooling passages may extend. Further, the baffle plate may have a non-apertured plate overlying and covering apertures in a central portion of the baffle plate.
Abstract: An oxygen-free and nitrogen-free plasma ashing process for removing photoresist in the presence of a low k material from a semiconductor substrate. The process includes forming reactive species by exposing a plasma gas composition to an energy source to form plasma. The plasma gas composition is free from oxygen-bearing and nitrogen-bearing gases. The plasma selectively removes the photoresist from the underlying substrate containing low k material by exposing the photoresist to the reactive species. The process can be used with carbon and/or hydrogen based low k dielectric materials.
Type:
Grant
Filed:
May 14, 2001
Date of Patent:
October 7, 2003
Assignee:
Axcelis Technologies
Inventors:
Carlo Waldfried, Ivan Berry, Orlando Escorcia, Qingyuan Han, Palani Sakthivel
Abstract: A system and method for processing a workpiece in a thermal processing furnace by measuring the temperature of the workpiece in the thermal processing furnace, and based upon an intended temperature profile and the measured temperature of the workpiece, moving the workpiece through the furnace to heat process the workpiece generally according to the intended temperature profile.
Type:
Grant
Filed:
September 27, 2000
Date of Patent:
August 26, 2003
Assignee:
Axcelis Technologies
Inventors:
Ali Shajii, Brian Matthews, Jeffrey P. Hebb, John Danis
Abstract: A process for optically reducing charge build-up in an integrated circuit includes exposing the integrated circuit or portions thereof to a broadband radiation source. The process effectively reduces charge buildup that occurs in the manufacture of integrated circuits.
Type:
Grant
Filed:
November 30, 2001
Date of Patent:
August 12, 2003
Assignee:
Axcelis Technologies, Inc.
Inventors:
Alan C. Janos, Anthony Sinnot, Ivan Berry, Kevin Stewart, Robert Douglas Mohondro
Abstract: A radiation source constructed in accordance with the invention is particularly suited for use in processing semiconductor wafers. An exemplary embodiment of the invention includes a base electrode having a two dimensional surface bounding one side of a radiation emitting region. An ionizable, excimer gas is present in the radiation emitting region. The excimer gas, when energized, emits radiation in the UV and/or VUV wavelengths. A two dimensional dielectric radiation transmissive layer bounds an opposite side of the radiation emitting region and transmits radiation to a wafer treatment region. Disposed between the dielectric radiation transmissive layer and a protective radiation transmissive window is a two dimensional matrix or screen electrode defining a plane generally parallel to the two dimensional surface of the base electrode region. A power supply coupled to the base and matrix electrodes to energize the electrodes and the eximer gas causing emission of UV and/or VUV radiation.
Abstract: The invention provides a system and apparatus by which a workpiece pad is supplied to support workpieces being implanted in a rotating or spinning batch implanter process disk. The workpiece pad provides reduced surface adhesion forces and sufficient heat transfer from the workpieces to the process disk, and furthermore reduces particle generation and contamination of the workpiece from the workpiece pad. The workpiece pad furthermore comprises an ordered array of micro-structures. In addition, the invention includes a method of forming a workpiece pad comprising an ordered array of micro-structures.
Abstract: A process and apparatus for determining a real-time etching rate during a plasma mediated etching process. Real-time etching rate determination includes monitoring an interference pattern generated by a direct light beam and a reflected light beam from a wafer surface. A viewing angle for recording the interference pattern is nearly parallel to the wafer plane and at a fixed focal point on the layer to be removed. The direct light beam and reflected light beams are generated in situ during plasma processing.
Abstract: A process for reducing roughness from a surface of a patterned photoresist. The process includes exposing a substrate having the patterned photoresist thereon to a vapor, wherein the vapor penetrates into and/or reacts with the surface of the photoresist. The substrate having the patterned photoresist thereon is then heated to a temperature and for a time sufficient to cause the surface of the photoresist to flow and/or react with the vapor wherein the surface roughness decreases. Optionally, the substrate is exposed to radiation during the process to increase the etch resistance of the photoresist and/or facilitate the reaction of the vapor with the surface of the photoresist.
Abstract: An ion buncher stage for a linear accelerator system is disclosed for bunching ions in an ion implantation system. The ion buncher stage may be employed upstream of one or more accelerating stages such that the loss of ions in the linear accelerator system is reduced. The invention further includes an asymmetrical double gap buncher stage, as well as a slit buncher stage for further improvement of ion implantation efficiency. Also disclosed are methods for accelerating ions in an ion implanter linear accelerator.
Type:
Grant
Filed:
August 21, 2002
Date of Patent:
June 24, 2003
Assignee:
Axcelis Technologies, Inc.
Inventors:
Kourosh Saadatmand, William F. DiVergilio
Abstract: The invention provides apparatus by which a cooling gas is supplied from a stationary source to the back side of batch ion implanter workpieces being implanted in a rotating or spinning batch implanter process disk. The cooling gas provides improved heat transfer from the workpieces to the process disk, which may be advantageously combined with circulation of cooling fluid through passages in the process disk to remove heat therefrom. The invention further includes a rotary feedthrough employed to transfer the cooling gas from a stationary housing to a gas chamber in a rotating shaft which spins the batch implanter process disk. In addition, a seal apparatus is provided which seals the cooling gas applied to the back sides of the workpieces from the vacuum in which the front sides of the workpieces are implanted.
Type:
Grant
Filed:
September 26, 2000
Date of Patent:
June 24, 2003
Assignee:
Axcelis Technologies, Inc.
Inventors:
David J. Chipman, Bryan C. Lagos, Robert J. Mitchell, Gary Rosen, Dale K. Stone
Abstract: An ion source (10) for an ion implanter is provided, comprising: (i) an ionization chamber (14) defined at least partially by chamber walls (12), and having an inlet (45) into which a sputtering gas may be injected and an aperture (18) through which an ion beam (B) may be extracted; (ii) an ionizing electron source (44) for ionizing the sputtering gas to form a sputtering plasma; and (iii) a sputterable repeller (100). The sputterable repeller both (a) repels electrons emitted by the electron source, and (b) provides a source of sputtered material that can be ionized by the electron source. The sputterable repeller (100) comprises a slug (108) of sputterable material, and further comprises mounting structure (102, 104) for removably mounting the slug within the ionization chamber (14), so that the slug is made removably detachable from the mounting structure.
Type:
Grant
Filed:
August 7, 2000
Date of Patent:
June 24, 2003
Assignee:
Axcelis Technologies, Inc.
Inventors:
Thomas N. Horsky, Tommy D. Hollingsworth