Patents Assigned to AyDeeKay LLC
  • Publication number: 20230013568
    Abstract: An integrated circuit may include a full-scale reference generation circuit that corrects for variation in the gain or full scale of a set of interleaved analog-to-digital converters (ADCs). Notably, the full-scale reference generation circuit may provide a given full-scale or reference setting for a given interleaved ADC, where the given full-scale setting corresponds to a predefined or fixed component and a variable component (which may specify a given full-scale correction for a given full scale). For example, the full-scale reference generation circuit may include a full-scale reference generator replica circuit that outputs a fixed current corresponding to the fixed component. Furthermore, the full-scale reference generation circuit may include a full-scale reference generator circuit that outputs a first voltage corresponding to the given full-scale setting based at least in part on the fixed current and a variable current that, at least in part, specifies the given full-scale correction.
    Type: Application
    Filed: July 22, 2022
    Publication date: January 19, 2023
    Applicant: AyDeeKay LLC dba Indie Semiconductor
    Inventors: Christopher A. Menkus, Robert W. Kim
  • Publication number: 20230014653
    Abstract: A radar antenna calibration method includes: forming a detection matrix from signals detected by an arrangement of receive antennas in response to chirps transmitted by an arrangement of transmit antennas, the detection matrix having multiple rows corresponding to the chirps, multiple columns corresponding to a signal sample, and multiple planes corresponding the receive antennas; deriving a range matrix by performing a frequency transform on a portion of each row of the detection matrix; extracting a slice of the range matrix, with different rows of the slice being associated with different chirps and with different receive antennas; deriving a velocity matrix from the extracted slice by performing a frequency transform on a portion of each column of the extracted slice; analyzing the velocity matrix to determine a current peak width; and adjusting, based on the current peak width, phase shifts associated with one or more of the receive antennas.
    Type: Application
    Filed: June 2, 2022
    Publication date: January 19, 2023
    Applicant: AyDeeKay LLC dba Indie Semiconductor
    Inventors: Danny Elad, Marko Mlinar, Simon Srot, Dan Corcos
  • Publication number: 20220391335
    Abstract: An integrated circuit is described. This integrated circuit may include: an interface module with a first power domain and a second power domain. The first power domain may include a digital controller, and the second power domain may include a first analog front end (AFE) circuit. Moreover, the interface module may include up/down level shifters that communicate electrical signals that include a DC component from the first power domain to the second power domain. In some embodiments, the integrated circuit may provide a fully on-chip solution to handle level shifting between the AFE circuit and a digital controller in Universal Serial Bus (USB) 2.0 during communication of electrical signals in a full-speed mode and/or a high-speed mode.
    Type: Application
    Filed: January 14, 2022
    Publication date: December 8, 2022
    Applicant: AyDeeKay LLC dba Indie Semiconductor
    Inventors: Mohammad Radfar, Scott David Kee, Jeffrey Michael Zachan, Craig Petku
  • Patent number: 11515883
    Abstract: An integrated circuit includes a set of N unit analog-to-digital converters (ADCs) having a common architecture, and which provide an aggregate data rate. Moreover, the integrated circuit includes control logic that selects subsets of the set of N unit ADCs in order to realize sub-ADCs of different data rates that can each be an arbitrary integer multiple of an inverse of N times the aggregate data rate of the N unit ADCs. Furthermore, the control logic may dynamically select the subsets on the fly or on a frame-by-frame basis. This dynamically selection may occur at boot time and/or a runtime. Additionally, the given different data rate may correspond to one or more phases of a multi-phase clock in the integrated circuit, where the multiphase clock may include a number of phases corresponding to a number of possible subsets, and given selected subsets may not use all of the available phases.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: November 29, 2022
    Assignee: AyDeeKay LLC
    Inventors: Setu Mohta, Christopher A. Menkus, David Kang
  • Publication number: 20220373675
    Abstract: Automotive radar methods and systems for enhancing resistance to interference using a built-in self-test (BIST) module. In one illustrative embodiment, an automotive radar transceiver includes: a signal generator that generates a transmit signal; a modulator that derives a modulated signal from the transmit signal using at least one of phase and amplitude modulation; at least one receiver that mixes the transmit signal with a receive signal to produce a down-converted signal, the receive signal including the modulated signal during a built-in self-test (BIST) mode of operation; and at least one transmitter that drives a radar antenna with a selectable one of the transmit signal and the modulated signal.
    Type: Application
    Filed: June 9, 2022
    Publication date: November 24, 2022
    Applicant: AyDeeKay LLC dba Indie Semiconductor
    Inventor: Tom Heller
  • Patent number: 11487683
    Abstract: Techniques in electronic systems, such as in systems comprising a CPU die and one or more external mixed-mode (analog) chips, may provide improvements advantages in one or more of system design, performance, cost, efficiency and programmability. In one embodiment, the CPU die comprises at least one microcontroller CPU and circuitry enabling the at least one CPU to have a full and transparent connectivity to an analog chip as if they are designed as a single chip microcontroller, while the interface design between the two is extremely efficient and with limited in number of wires, yet may provide improved performance without impact to functionality or the software model.
    Type: Grant
    Filed: April 7, 2021
    Date of Patent: November 1, 2022
    Assignee: AyDeeKay LLC
    Inventor: Scott David Kee
  • Patent number: 11487684
    Abstract: A system that includes a first die with a central processing unit (CPU) and a second die electrically coupled to the first die by die-to-die interconnects is described. During operation, the first die: provides, to the second die, a set of predefined wake-up events; provides, to the second die, a message that transitions power-management control of the first die to the second die; and transitions the first die from a first operating mode to a second operating mode that has lower power consumption than that of the first operating mode. Then, the second die: determines an occurrence of a predefined wake-up event based at least in part on the set of predefined wake-up events; and provides, to the first die, information that initiates a transition of the first die from the second operating mode to the first operating mode.
    Type: Grant
    Filed: May 8, 2021
    Date of Patent: November 1, 2022
    Assignee: AyDeeKay LLC
    Inventor: Scott David Kee
  • Patent number: 11487685
    Abstract: Techniques in electronic systems, such as in systems comprising a CPU die and one or more external mixed-mode (analog) chips, may provide improvements advantages in one or more of system design, performance, cost, efficiency and programmability. In one embodiment, the CPU die comprises at least one microcontroller CPU and circuitry enabling the at least one CPU to have a full and transparent connectivity to an analog chip as if they are designed as a single chip microcontroller, while the interface design between the two is extremely efficient and with limited in number of wires, yet may provide improved performance without impact to functionality or the software model.
    Type: Grant
    Filed: May 8, 2021
    Date of Patent: November 1, 2022
    Assignee: AyDeeKay LLC
    Inventor: Scott David Kee
  • Publication number: 20220311448
    Abstract: An analog-to-digital converter (ADC) is described. This ADC includes a conversion circuit with multiple bit-conversion circuits. During operation, the ADC may receive an input signal. Then, the conversion circuit may asynchronously perform successive-approximation-register (SAR) analog-to-digital conversion of the input signal using the bit-conversion circuits, where the bit-conversion circuits to provide a quantized representation of the input signal. For example, the bit-conversion circuits may asynchronously and sequentially perform the SAR analog-to-digital conversion to determine different bits in the quantized representation of the input signal. Moreover, the ADC may selectively perform self-calibration of a global delay of the bit-conversions circuits. Note that the timing self-calibration may be iterative and subject to a constraint that a maximum conversion time is less than a target conversion time.
    Type: Application
    Filed: June 7, 2022
    Publication date: September 29, 2022
    Applicant: AyDeeKay LLC dba Indie Semiconductor
    Inventors: Christopher A. Menkus, Robert W. Kim
  • Patent number: 11424752
    Abstract: An integrated circuit may include a full-scale reference generation circuit that corrects for variation in the gain or full scale of a set of interleaved analog-to-digital converters (ADCs). Notably, the full-scale reference generation circuit may provide a given full-scale or reference setting for a given interleaved ADC, where the given full-scale setting corresponds to a predefined or fixed component and a variable component (which may specify a given full-scale correction for a given full scale). For example, the full-scale reference generation circuit may include a full-scale reference generator replica circuit that outputs a fixed current corresponding to the fixed component. Furthermore, the full-scale reference generation circuit may include a full-scale reference generator circuit that outputs a first voltage corresponding to the given full-scale setting based at least in part on the fixed current and a variable current that, at least in part, specifies the given full-scale correction.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: August 23, 2022
    Assignee: AyDeeKay LLC
    Inventors: Christopher A. Menkus, Robert W. Kim
  • Publication number: 20220260700
    Abstract: An integrated circuit that includes an analog frequency-selective gain filter having a frequency-selective gain corresponding to a high-pass filter prior to an analog-to-digital converter (ADC) is described. During operation, the analog frequency-selective gain filter may provide frequency-selective gain (such as a high-pass filter characteristic) to an electrical signal corresponding to a received signal (such as a LiDAR signal, a sonar signal, an ultrasound signal and/or a radar signal) in a ranging receiver. Note that the received signal may correspond to a received frequency-modulated continuous-wave (FMCW) signal. Moreover, the integrated circuit may include a digital processing circuit after the ADC and control logic that instructs the digital processing circuit to characterize the frequency-selective gain (such as an amplitude and/or a phase at a frequency) during a calibration mode.
    Type: Application
    Filed: December 20, 2021
    Publication date: August 18, 2022
    Applicant: AyDeeKay LLC dba Indie Semiconductor
    Inventors: Setu Mohta, Scott David Kee, Aravind Loke
  • Publication number: 20220222190
    Abstract: Techniques in electronic systems, such as in systems comprising a CPU die and one or more external mixed-mode (analog) chips, may provide improvements advantages in one or more of system design, performance, cost, efficiency and programmability. In one embodiment, the CPU die comprises at least one microcontroller CPU and circuitry enabling the at least one CPU to have a full and transparent connectivity to an analog chip as if they are designed as a single chip microcontroller, while the interface design between the two is extremely efficient and with limited in number of wires, yet may provide improved performance without impact to functionality or the software model.
    Type: Application
    Filed: March 26, 2022
    Publication date: July 14, 2022
    Applicant: AyDeeKay LLC dba Indie Semiconductor
    Inventor: Scott David Kee
  • Publication number: 20220216880
    Abstract: A conversion circuit that performs analog-to-digital conversion is described. During operation, the conversion circuit receives an input signal. Then, the conversion circuit performs analog-to-digital conversion and provides a quantized output corresponding to the input signal based at least in part on a first power-supply voltage and a second power-supply voltage of the conversion circuit. For example, the quantized output may be based at least in part on a comparison of the input signal to the first power-supply voltage and the second power-supply voltage. Moreover, the first power-supply voltage and the second power-supply voltage may specify a full-scale range of the conversion circuit. When the full-scale range exceeds a second full-scale range associated with reference voltages that are other than the first power-supply voltage and the second power-supply voltage, the quantized output may correspond to a larger number of bits than when the full-scale range equals the second full-scale range.
    Type: Application
    Filed: June 8, 2021
    Publication date: July 7, 2022
    Applicant: AyDeeKay LLC dba Indie Semiconductor
    Inventors: Christopher A. Menkus, Robert W. Kim
  • Publication number: 20220216877
    Abstract: An integrated circuit that includes a generating circuit is described. During operation, the generating circuit may provide an edge clock having a target phase within a clock period of an input clock, where the generating circuit does not include a delay-locked loop (DLL). For example, the generating circuit may include a gated ring oscillator that provides a reference clock having a first fundamental frequency that is larger than a second fundamental frequency of the input clock. Note that the gated ring oscillator may be programmable to adjust the first fundamental frequency within a predefined range of values. Moreover, the generating circuit may include a control circuit that determines a reference count of a number of edges of the reference clock within a reference period of the reference clock.
    Type: Application
    Filed: December 20, 2021
    Publication date: July 7, 2022
    Applicant: AyDeeKay LLC dba Indie Semiconductor
    Inventor: Robert W. Kim
  • Publication number: 20220214985
    Abstract: Techniques in electronic systems, such as in systems comprising a CPU die and one or more external mixed-mode (analog) chips, may provide improvements advantages in one or more of system design, performance, cost, efficiency and programmability. In one embodiment, the CPU die comprises at least one microcontroller CPU and circuitry enabling the at least one CPU to have a full and transparent connectivity to an analog chip as if they are designed as a single chip microcontroller, while the interface design between the two is extremely efficient and with limited in number of wires, yet may provide improved performance without impact to functionality or the software model.
    Type: Application
    Filed: March 26, 2022
    Publication date: July 7, 2022
    Applicant: AyDeeKay LLC dba Indie Semiconductor
    Inventor: Scott David Kee
  • Publication number: 20220166440
    Abstract: An integrated circuit includes a set of N unit analog-to-digital converters (ADCs) having a common architecture, and which provide an aggregate data rate. Moreover, the integrated circuit includes control logic that selects subsets of the set of N unit ADCs in order to realize sub-ADCs of different data rates that can each be an arbitrary integer multiple of an inverse of N times the aggregate data rate of the N unit ADCs. Furthermore, the control logic may dynamically select the subsets on the fly or on a frame-by-frame basis. This dynamically selection may occur at boot time and/or a runtime. Additionally, the given different data rate may correspond to one or more phases of a multi-phase clock in the integrated circuit, where the multiphase clock may include a number of phases corresponding to a number of possible subsets, and given selected subsets may not use all of the available phases.
    Type: Application
    Filed: May 17, 2021
    Publication date: May 26, 2022
    Applicant: AyDeeKay LLC dba Indie Semiconductor
    Inventors: Setu Mohta, Christopher A. Menkus, David Kang
  • Publication number: 20220149858
    Abstract: An analog-to-digital converter (ADC) is described. This ADC includes a conversion circuit with multiple bit-conversion circuits. During operation, the ADC may receive an input signal. Then, the conversion circuit may asynchronously perform successive-approximation-register (SAR) analog-to-digital conversion of the input signal using the bit-conversion circuits, where the bit-conversion circuits to provide a quantized representation of the input signal. For example, the bit-conversion circuits may asynchronously and sequentially perform the SAR analog-to-digital conversion to determine different bits in the quantized representation of the input signal. Moreover, the ADC may selectively perform self-calibration of a global delay of the bit-conversions circuits. Note that the timing self-calibration may be iterative and subject to a constraint that a maximum conversion time is less than a target conversion time.
    Type: Application
    Filed: May 17, 2021
    Publication date: May 12, 2022
    Applicant: AyDeeKay LLC dba Indie Semiconductor
    Inventors: Christopher A. Menkus, Robert W. Kim
  • Publication number: 20220149854
    Abstract: An integrated circuit may include a full-scale reference generation circuit that corrects for variation in the gain or full scale of a set of interleaved analog-to-digital converters (ADCs). Notably, the full-scale reference generation circuit may provide a given full-scale or reference setting for a given interleaved ADC, where the given full-scale setting corresponds to a predefined or fixed component and a variable component (which may specify a given full-scale correction for a given full scale). For example, the full-scale reference generation circuit may include a full-scale reference generator replica circuit that outputs a fixed current corresponding to the fixed component. Furthermore, the full-scale reference generation circuit may include a full-scale reference generator circuit that outputs a first voltage corresponding to the given full-scale setting based at least in part on the fixed current and a variable current that, at least in part, specifies the given full-scale correction.
    Type: Application
    Filed: May 17, 2021
    Publication date: May 12, 2022
    Applicant: AyDeeKay LLC dba Indie Semiconductor
    Inventors: Christopher A. Menkus, Robert W. Kim
  • Publication number: 20220099501
    Abstract: An integrated circuit that controls distributed temperature sensors in a semiconductor die is described. This integrated circuit may include: memory; a controller (such as a PTAT controller) coupled to the memory; temperature sensors distributed at measurement locations in the semiconductor die (such as remote locations from the controller), where a given temperature sensor includes building blocks (or components) that are common to the temperature sensors; and routing between the controller and the building blocks over an addressable bus, where signal lines for analog signals in the addressable bus are reused when communicating between the controller and different temperature sensors.
    Type: Application
    Filed: September 29, 2020
    Publication date: March 31, 2022
    Applicant: AyDeeKay LLC dba Indie Semiconductor
    Inventor: Scott David Kee
  • Publication number: 20220038112
    Abstract: Analog-to-digital converters (ADCs) with a high sampling rate and larger spurious-free dynamic range (SFDR) in the spectral domain are used in many applications, including, but not limited to, range finders, meteorology, spectroscopy, and/or coherent medical imaging. Circuit techniques for time-interleaving a set of low-sampling-rate sub-ADCs into a higher sampling-rate ADC with a larger SFDR than existing approaches are described. In one embodiment, the circuit techniques add a small number of additional units or sub-ADCs. This change in architecture enables a dynamic-selection procedure to time-interleave the set of sub-ADCs in such a way that mismatch-related non-idealities of the constituent sub-ADCs are spread in the frequency domain into a noise-like spectral shape in order to prevent the creation of spurious tones, which would otherwise deleteriously impact the SFDR.
    Type: Application
    Filed: May 17, 2021
    Publication date: February 3, 2022
    Applicant: AyDeeKay LLC dba Indie Semiconductor
    Inventors: Scott David Kee, Setu Mohta