Patents Assigned to Baoshan Iron & Steel Co., Ltd.
  • Publication number: 20160108492
    Abstract: A high-formability, super-high-strength, hot-dip galvanized steel plate, the chemical composition of which comprises, based on weight percentage, C: 0.15-0.25 wt %, Si: 1.00-2.00 wt %, Mn: 1.50-3.00 wt %, P?0.015 wt %, S?0.012 wt %, Al: 0.03-0.06 wt %, N?0.008 wt %, and the balance of iron and unavoidable impurities. The room temperature structure of the steel plate comprises 10-30% ferrite, 60-80% martensite and 5-15% residual austenite. The steel plate has a yield strength of 600-900 MPa, a tensile strength of 980-1200 MPa, and an elongation of 15-22%. Through an appropriate composition design, a super-high-strength, cold rolled, hot-dip galvanized steel plate is manufactured by continuous annealing, wherein no expensive alloy elements are added; instead, remarkable increase of strength along with good plasticity can be realized just by appropriate augment of Si, Mn contents in combination with suitable processes of annealing and furnace atmosphere control.
    Type: Application
    Filed: February 21, 2013
    Publication date: April 21, 2016
    Applicant: Baoshan Iron & Steel Co., Ltd.
    Inventors: Yong ZHONG, Li WANG, Weijun FENG, Liyang ZHANG
  • Publication number: 20160047019
    Abstract: A method for manufacturing a superior 13Cr thickened drillrod comprises the following steps: firstly, thickening the ends of a steel tube with a composition so as to obtain a drillrod with thickened ends, the composition in percentage by weight being: C: 0.01-0.05%, Si?0.5%, Mn: 0.2-1.0%, Cr: 12-14%, Mo: 1-3%, Ni: 4-6%, and a balance of Fe and inevitable impurities; after heating the tube as a whole to 950-1000° C., air cooling same and tempering same at 600-650° C.; and machining the two thickened ends respectively into an externally threaded drillrod coupler and an internally threaded drillrod coupler; wherein the tube end thickening is an external thickening, including three rounds of heating and three rounds of thickening, with at least one pass of deformation for each round, and the heating temperature being 1150-1200° C.
    Type: Application
    Filed: November 12, 2013
    Publication date: February 18, 2016
    Applicant: BAOSHAN IRON & STEEL CO., LTD.
    Inventors: Peng Zhao, Yanpeng Song, Jianwei Zhang, Minghua Wang, Chunxia Zhang
  • Publication number: 20150298186
    Abstract: The present invention relates to a method for producing hot rolled strip steel, especially the producing method of hot rolled strip steel with multiple target thicknesses in the longitudinal direction. It is a method to produce the strip steel with different target thicknesses in the longitudinal direction by using a hot continuous rolling mill. In this method, the first equal-thickness section of the strip steel is controlled with the conventional thickness control strategy, while other equal-thickness sections and the transition section between equal-thickness sections are controlled with the variable-thickness control strategy.
    Type: Application
    Filed: November 30, 2012
    Publication date: October 22, 2015
    Applicant: BAOSHAN IRON & STEEL CO., LTD.
    Inventors: Yong Zhang, Xingze Zhou, Xuyi Shan, Konglin Zhu, Wenwang Meng, Chuanguo Zhang, Houjun Pang, Zhiling Gao
  • Publication number: 20150255211
    Abstract: A manufacturing method of oriented silicon steel with magnetic induction B8 of not less than 1.88 T, comprising the following steps: 1) smelting and continuous casting to obtain a slab, wherein the content of N is controlled at 0.002-0.014 wt % in the smelting stage; 2) hot-rolling; 3) cold-rolling; 4) decarbonizing and annealing; 5) nitriding treatment, wherein infiltrated nitrogen content [N]D is controlled to satisfy the formula: 328?0.14a?0.85b?2.33c?[N]D?362?0.16a?0.94b?2.57c, wherein a is the content of Als in the smelting step, with the unit of ppm; b is the content of N element, with the unit of ppm; and c is primary grains size, with the unit of ?m; 6) coating a steel's surfaces with a magnesium oxide layer and annealing; and 7) applying an insulating coating.
    Type: Application
    Filed: December 11, 2012
    Publication date: September 10, 2015
    Applicant: BAOSHAN IRON & STEEL CO., LTD.
    Inventors: Kanyi Shen, Guobao Li, Shuangjie Chu, Yezhong Sun, Huabing Zhang, Yongjie Yang, Zhuochao Hu, Bin Zhao, Qi Hu, Jie Huang, Peili Zhang
  • Publication number: 20150243418
    Abstract: A hot rolled silicon steel producing method comprises: silicon steel slab heating process, rough rolling process and finish rolling process. The heating process comprises a pre-heating stage, a heating stage and a soaking stage. The pre-heating stage satisfies the following formula (1). In the formula, VTp is a temperature increasing rate, in the pre-heating stage, whose unit is ° C./min; t is a total heating time of the slab in the heating furnace, and t=180-240 min; and Tc is an initial temperature when the slab is put into the furnace, whose unit is ° C. By using the foregoing formula, the heating process and the rough rolling process are changed, an occurrence rate of edge defects during the production of the hot rolled silicon steel can be reduced, and the hot rolled silicon steel with good surface quality can be produced. V Tp > 220 ? ? min t × 100 ? ° ? ? C . T C + 200 ? ° ? ? C . × 25 ? ° ? ? C .
    Type: Application
    Filed: March 29, 2012
    Publication date: August 27, 2015
    Applicant: Baoshan Iron & Steel Co., Ltd.
    Inventors: Huawei Zhang, Yaping Wu, Yu Gong, Yezhong Sun, Hongxu Hei
  • Publication number: 20150231693
    Abstract: A method for cleaning a surface of a twin-roller thin-belt continuous casting roller, wherein each casting roller of the twin-roller thin-belt continuous casting machine comprises two brush rollers in an upper and lower arrangement for cleaning the surface thereof, wherein a rotational direction of at least one brush roller is as same as a casting roller, and the linear speed of the casting roller is constant and greater than its rotational speed; and a roller surface cleaning device controls the distance or the pressure between the brush rollers and the casting roller by a position control device fixed on a casting roller bearing seat, and it controls the flattening amount in 1-10 times of the average pit depth on the casting roller face after being brushed, so as to ensure cleaning efficiency.
    Type: Application
    Filed: September 27, 2012
    Publication date: August 20, 2015
    Applicant: BAOSHAN IRON & STEEL CO., LTD.
    Inventors: Jian Zhang, Yuan Fang, Changhong Ye, Chengquan Wang, Junbao Zhang
  • Publication number: 20150226014
    Abstract: The invention discloses a drill pipe having ultra-high toughness and high strength and comprising the following chemical elements in mass percentage: C: 0.24-0.30%, Si: 0.1-0.5%, Mn: 0.7-1.5%, Cr: 0.7-1.5%, Mo: 0.5-0.75%, V: 0.01-0.10%, Nb: 0.01-0.05%, P?0.015% , S?0.005%, and the balance of Fe and unavoidable impurities; and a process of manufacturing the drill pipe having ultra-high toughness and high strength, comprising: heating the drill pipe as a whole to 900-950° C.; subjecting the inner surface of the drill pipe to axial-flow water-spray cooling and the outer surface of the drill pipe to laminar-flow water-spray cooling while controlling the amount of the water sprayed at thickened ends of the drill pipe and that along the pipe body to be different from each other; and controlling the tempering temperature to be 650-675° C. The inventive drill pipe having ultra-high toughness and high strength has a longitudinal full-size impact toughness at ?20° C. of at least 100 J and has a strength of 135 ksi.
    Type: Application
    Filed: August 21, 2013
    Publication date: August 13, 2015
    Applicant: BAOSHAN IRON & STEEL CO., LTD.
    Inventors: Peng Zhao, Jie Yu
  • Publication number: 20150211098
    Abstract: The invention provides a wear-resistant steel plate, which has the following chemical composition (wt. %): C: 0.08-0.21%, Si: 0.15-0.45%, Mn: 1.10-1.80%, P: ?0.015%, S: ?0.010%, Nb: 0.010-0.040%, Al: 0.010-0.080%, B: 0.0006-0.0014%, Ti: 0.005-0.050%, Ca: 0.0010-0.0080%, V?0.080%, Cr?0.60%, N?0.0080%, O?0.0060%, H?0.0004%, wherein 0.025%?Nb+Ti?0.080%, 0.030%?Al+Ti?0.12%, and the balance being Fe and unavoidable impurities. The invention also provides a method of manufacturing the wear-resistant steel plate, comprising smelting, casting, rolling, post-rolling direct cooling, inter alia. The wear-resistant steel plate obtained from the above composition and process has perfect weldability, high strength, high hardness, good low-temperature toughness, and excellent machinability, and is suitable for quick-wear devices in engineering and mining machinery, such as bucket, mining vehicle body and scraper transporter, etc.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 30, 2015
    Applicant: Baoshan Iron & Steel Co., Ltd.
    Inventors: Hongbin Li, Liandeng Yao, Yuchuan Miao
  • Patent number: 9084999
    Abstract: A system for disposing high temperature solid state steel slag includes a working barrel (4), a feeding barrel (9), a liftable hydraulic bracket (12), a supporting device (13) and a transmission device (14). The working barrel (4) axially connects with the feeding barrel (9) in series. The working barrel (4) is provided with cooling and crushing medium (4-1) and spray pipe inside. A method for disposing high temperature solid state steel slag by using said system enables single feeding and multiple disposing.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: July 21, 2015
    Assignee: Baoshan Iron & Steel Co., Ltd.
    Inventors: Yongli Xiao, Yongqian Li, Yin Liu, Jian Cui
  • Patent number: 9056343
    Abstract: A cold-rolling method for preventing fracture of high-silicon strip steel, characterized in that the high-silicon strip steel has a Si content ?2.3 wt %, and at the beginning of cold-rolling, the temperature of inlet strip steel is above 45° C.; during the cold-rolling process, an emulsion liquid is sputtered to the strip steel, a flow rate of the emulsion liquid is 3500 L/min at the inlet in rolling direction, a flow rate of the emulsion liquid is 1500-4000 L/min at an outlet in the rolling direction, and the temperature of the strip steel is maintained above 45° C. under the precondition to guarantee technological lubrication. The cold-rolling method of the invention might prevent fracture of a head portion and a tail portion of the strip steel, raise the rate of finished products, and increase production efficiency.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: June 16, 2015
    Assignee: BAOSHAN IRON & STEEL CO., LTD.
    Inventors: Dejun Su, Yong Li, Runjie Lin, Minghua Shen, Hongbing Wang, Huaqun Zhu, Xuechang You, Guiling Zhou
  • Patent number: 9038429
    Abstract: The invention provides a method for producing grain-oriented silicon steel with single cold rolling, comprising: 1) smelting, refining and continuous casting to obtain a casting blank; 2) hot rolling; 3) normalization, i.e. normalizing annealing and cooling; 4) cold-rolling, i.e. single cold rolling at a cold rolling reduction rate of 75-92%; 5) decarburizing annealing at 780-880° C. for 80-350 s in a protective atmosphere having a due point of 40-80° C., wherein the total oxygen [O] in the surface of the decarburized sheet: 171/t?[O]?313/t (t represents the actual thickness of the steel sheet in mm), the amount of absorbed nitrogen: 2-10 ppm; 6) high temperature annealing, wherein the dew point of the protective atmosphere: 0-50° C., the temperature holding time at the first stage: 6-30 h, the amount of absorbed nitrogen during high-temperature annealing: 10-40 ppm; 7) hot-leveling annealing.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: May 26, 2015
    Assignee: Baoshan Iron & Steel Co., Ltd.
    Inventors: Guobao Li, Pijun Zhang, Yongjie Yang, Kanyi Shen, Zhuochao Hu, Peiwen Wu, Weizhong Jin, Quanli Jiang
  • Publication number: 20150064343
    Abstract: A method of producing an extremely thick insulation coating on a surface of an electrical steel, comprises the following steps: 1) preparing a coating liquid—stirring sufficiently the coating liquid for 0.1˜4 hours, with the viscosity of the coating liquid being within 10˜80 S; 2) coating a strip steel—using a double-roller or a tri-roller coating machine, wherein the film thickness and evenness can be controlled by adjusting different parameters; 3) baking the coating—using three sections, that is, a drying section, a baking section and a cooling section, to bake the coating, wherein the temperature in the drying section is 100˜400° C., the temperature in the baking section is 200˜370° C.
    Type: Application
    Filed: December 14, 2011
    Publication date: March 5, 2015
    Applicant: BAOSHAN IRON & STEEL CO., LTD
    Inventors: Yongqiang Lu, Chunguo Lv, Zhicheng Wang, Bin Chen, Xiao Chen, Shishu Xie
  • Publication number: 20150034212
    Abstract: A non-oriented electrical steel sheet with fine magnetic performance, and a calcium treatment method therefor, including an RH (Ruhrstahl-Heraeus) refinement step. The RH refinement step sequentially comprises a decarbonization step, an aluminum deoxidation step, and a step of adding calcium alloy. In the step of adding calcium alloy, time when the calcium alloy is added satisfies the following condition: time interval between Al and Ca/total time after ?Al=0.2-0.8. In this method, production cost is reduced, the production process is simple, a normal processing cycle of RH refinement is not affected, the device is convenient in operation and is controllable, and foreign substances are controllable in both shape and quantities. The non-oriented electrical steel sheet prepared according to the present invention has fine magnetic performance, and the method can be used for mass production of the non-oriented electrical steel sheet with fine magnetic performance.
    Type: Application
    Filed: March 27, 2012
    Publication date: February 5, 2015
    Applicant: Baoshan Iron & Steel Co., Ltd.
    Inventors: Feng Zhang, Xiandong Liu, Shishu Xie, Xuejun Lu, Xiao Chen, Aihua Ma, Peili Zhang, Yanwei Wang, Lan Zhang, Hongxu Hei
  • Publication number: 20150020358
    Abstract: The present invention discloses a method of motor vehicle sheet blanking and a system of the same, wherein the blanking method comprises: firstly, nesting for motor vehicle sheet material, and cutting it into group sheets with a shape and size confirmed by the multi length of the sheet; next, designing a backing die depending on scraps to be cut from the group sheet, and hollowing in areas corresponding to blanking openings in the backing die, in which the dimensions of the blanking openings are greater than that of the actual scraps to be cut; then, placing a group sheet onto the backing die; laser cutting the group sheet based on the shape of motor vehicle sheet, the cut scraps dropping through the blanking openings in the backing die onto a scrap conveyor belt underneath; stacking the cut sheets. The present invention can effectively process scraps cut from sheets and improve the blanking efficiency.
    Type: Application
    Filed: March 8, 2012
    Publication date: January 22, 2015
    Applicant: BAOSHAN IRON & STEEL CO., LTD.
    Inventors: Ruimin Wu, Wenhai Jin, Qi Yan, Chengguo Jin, Saidan Yang, Yuming Wang, Junliang Qiao, Shengbo Pan, Changqing Lv
  • Publication number: 20150013127
    Abstract: A hot rolled slab impact type mechanical scale removal device comprises a front cooling water nozzle group, an impact type scale removal gear roller group, a roller cooling device and a cleaning water nozzle group. A slab moves on a slab roller table. The front cooling water nozzle group, the impact type scale removal gear roller group and the cleaning water nozzle group are arranged in sequence along the movement direction of the slab. The impact type scale removal gear roller group is arranged on a support seat. The cooling water nozzle of the roller cooling device is arranged corresponding to the impact type scale removal gear roller group. According to the scale removal device, the oxide skins can be clearly removed, the temperature of the continuous casting slabs can be reduced and the hot rolling quality is improved.
    Type: Application
    Filed: September 24, 2012
    Publication date: January 15, 2015
    Applicant: BAOSHAN IRON & STEEL CO., LTD.
    Inventors: Shunhua Xiang, Hongquan Wen
  • Publication number: 20150013847
    Abstract: A method for producing a silicon steel normalizing substrate comprises: steelmaking, hot rolling and normalizing steps. The normalizing step uses a normalizing furnace having a nonoxidizing heating furnace section. The nonoxidizing heating furnace section comprises more than 3 furnace zones. An energy investment ratio of the furnace zones used in the nonoxidizing heating furnace section is adjusted, so as to control an excess coefficient ? of the nonoxidizing heating furnace section to be within a range of 0.8??<1.0.
    Type: Application
    Filed: March 26, 2012
    Publication date: January 15, 2015
    Applicant: BAOSHAN IRON & STEEL CO., LTD.
    Inventors: Hongxu Hei, Bo Wang, Shishu Xie, Xiandong Liu, Guohua Yang, Yongjie Yang, Aihua Ma, Xiaolin Li, Liang Zou, Huawei Zhang
  • Publication number: 20150013846
    Abstract: A method for producing a silicon steel normalizing substrate comprises steelmaking, hot rolling and normalizing steps. A normalizing furnace is used in the normalizing step, and along a moving direction of strip steel, the normalizing furnace sequentially comprises: a preheating section, a nonoxidizing heating section, a furnace throat, furnace sections for subsequent normalizing processing, and a delivery seal chamber. Furnace pressures of the normalizing furnace are distributed as follows: the furnace pressure of a downstream furnace section adjacent to the furnace throat along the moving direction of the strip steel is the highest, the furnace pressure decreases gradually from the furnace section with the highest furnace pressure to a furnace section in an inlet direction of the normalizing furnace, and the furnace pressure decreases gradually from the furnace section with the highest furnace pressure to a furnace section in an outlet direction of the normalizing furnace.
    Type: Application
    Filed: March 27, 2012
    Publication date: January 15, 2015
    Applicant: Baoshan Iron & Steel Co., Ltd.
    Inventors: Hongxu Hei, Xiao Chen, Xiandong Liu, Shishu Xie, Dejun Su, Runjie Lin, Peili Zhang, Rongqiang Jiang, Miao Ye
  • Publication number: 20150000794
    Abstract: An unoriented silicon steel having high magnetic conductivity and low iron loss at a working magnetic density of 1.0-1.5 T and method for manufacturing same. By proper deoxidation control in a RH refining and high-temperature treatment for a short time in a normalizing step, the method can reduce the amount of inclusions in the silicon steel and improve grain shape, so as to improve the magnetic conductivity and iron loss of the unoriented silicon steel at a magnetic density of 1.0-1.5 T.
    Type: Application
    Filed: March 29, 2012
    Publication date: January 1, 2015
    Applicant: BAOSHAN IRON & STEEL CO., LTD.
    Inventors: Liang Zou, Bo Wang, Xiandong Liu, Aihua Ma, Shishu Xie, Hongxu Hei
  • Publication number: 20140377124
    Abstract: Disclosed are a non-oriented electrical steel plate with low iron loss and high magnetic conductivity and a manufacturing process therefor. The casting blank of the steel plate comprises the following components: Si: 0.1-2.0 wt %, Al: 0.1-1.0 wt %, Mn: 0.10-1.0 wt %, C: ?0.005 wt %, P: ?0.2 wt %, S: ?0.005 wt %, N: ?0.005 wt %, the balance being Fe and unavoidable impurities. The magnetic conductivity of the steel plate meets the following relationship formula: ?10+?13+?15?13982?586.5P15/50; ?10+?13+?15?10000, wherein P15/50 is the iron loss at a magnetic induction intensity of 1.5 T at 50 Hz; ?10, ?13, and ?15 are relative magnetic conductivities at induction intensities of 1.0 T, 1.3 T, and 1.5 T at 50 Hz, respectively. The steel plate can be used for manufacturing highly effective and ultra-highly effective electric motors.
    Type: Application
    Filed: March 27, 2012
    Publication date: December 25, 2014
    Applicant: BAOSHAN IRON & STEEL CO., LTD.
    Inventors: Aihua Ma, Bo Wang, Xiandong Liu, Liang Zou, Shishu Xie, Hongxu Hei
  • Publication number: 20140366602
    Abstract: A method for manufacturing thin strip continuously cast 700 Mpa grade high strength weather-resistant steel, the method comprising the following steps: 1) casting a 1-5 mm thick cast strip in a double roller continuous casting machine, the cast strip comprising the following chemical compositions by weight percent: C 0.03-0.1%, Si?0.4%, Mn 0.75-2.0%, P 0.07-0.22%, S?0.01%, N?0.012%, and Cu 0.25-0.8%, further comprising more than one of Nb, V, Ti and Mo: Nb 0.01-0.1%, V 0.01-0.1%, Ti 0.01-0.1%, and Mo 0.1-0.5%, and the balance being Fe and unavoidable impurities; 2) cooling the cast strip at a rate greater than 20° C./s; 3) hot rolling the cast strip under a temperature of 1050-1250° C. at a reduction rate of 20-50% and a deformation rate greater than 20 s-1; then conducting austenite online recrystallization, the thickness of the hot rolled strip being 0.5-3.0 mm; 4) cooling at a rate of 10-80° C./s; and 5) rolling up under a temperature of 500-650° C.
    Type: Application
    Filed: February 18, 2013
    Publication date: December 18, 2014
    Applicant: Baoshan Iron & Steel Co., Ltd.
    Inventors: Yuan Fang, Xiufang Wang, Yan Yu, Jianchun Wu, Feng Zhang, Wei He