Patents Assigned to BASF Corporation
  • Patent number: 11724248
    Abstract: The present disclosure relates to copper-containing molecular sieve catalysts that are highly suitable for the treatment of exhaust containing NOx pollutants. The copper-containing molecular sieve catalysts contain ion-exchanged copper as Cu+2 and Cu(OH)+1, and DRIFT spectroscopy of the catalyst exhibits perturbed T-O-T vibrational peaks corresponding to the Cu+2 and Cu(OH)+1. In spectra taken of the catalytic materials, a ratio of the Cu+2 to the Cu(OH)+1 peak integration areas preferably can be ?1. The copper-containing molecular sieve catalysts are aging stable such that the peak integration area percentage of the Cu+2 peak (area Cu+2/(area Cu+2+area Cu(OH)+1)) increases by ?20% upon aging at 800° C. for 16 hours in the presence of 10% H2O/air, compared to the fresh state.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: August 15, 2023
    Assignee: BASF Corporation
    Inventors: Wen-Mei Xue, Xiaofan Yang, Haiyang Zhu, Stanley Roth, Jeff Yang, Subramanian Prasad, Ahmad Moini
  • Publication number: 20230249164
    Abstract: The present disclosure provides a selective catalytic reduction (SCR) catalyst composition prepared from a first un-promoted zeolite having a first silica-to-alumina ratio (SAR) from about 5 to about 100, a promoter precursor, and a second un-promoted zeolite having a second silica-to-alumina ratio (SAR) from about 5 to about 100. The present disclosure further provides a method of forming the SCR catalyst composition, a catalytic article comprising the SCR catalyst composition, an engine exhaust gas treatment system comprising the SCR catalyst composition, and a method of removing nitrogen oxides from exhaust gas from a lean burn engine using the SCR catalyst composition.
    Type: Application
    Filed: June 24, 2021
    Publication date: August 10, 2023
    Applicant: BASF CORPORATION
    Inventor: Wen-Mei Xue
  • Patent number: 11717814
    Abstract: The present disclosure recognizes a correlation between zeolitic surface area (ZSA) of a catalyst composition and its catalytic activity. Particularly, the disclosure provides catalyst articles for diesel NOx abatement, including a substrate and a washcoat layer containing metal-promoted molecular sieves, wherein the zeolitic surface area (ZSA) of the catalyst article is about 100 m2/g or greater, the volumetric surface area is about 900 m2/in3 or greater, and/or the total zeolitic surface area (tZSA) is about 1200 m2 or greater. The disclosure further relates to methods for evaluating ZSA, volumetric ZSA, and tZSA, e.g.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: August 8, 2023
    Assignee: BASF CORPORATION
    Inventors: Ivan Petrovic, Jaya L. Mohanan, Joseph J. Petenko
  • Patent number: 11713494
    Abstract: Provided are processes for extracting lithium and optionally nickel from a Nickel(II)/Lithium(I) (Ni2+/Li+) solution. The extraction is optionally performed in a series of steps with counterflow of aqueous and organic flows to thereby produce a lithium poor solution. The lithium poor solution may be treated so that remaining Ni in the lithium poor solution may be directly precipitated therefrom in the form of a Ni salt. Once complete, the process provides for recoverable nickel and/or lithium that may be recycled into batteries or sold for other uses.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: August 1, 2023
    Assignee: BASF Corporation
    Inventors: Jack Bender, William C. Mays, Tinoush Dinn, Martin L. Panchula, Dieter G. Von Deak
  • Patent number: 11713705
    Abstract: A nitrous oxide (N2O) removal catalyst composite is provided, comprising a N2O removal catalytic material on a substrate, the catalytic material comprising a rhodium (Rh) component supported on a ceria-based support, wherein the catalyst composite has a H2-consumption peak of about 100° C. or less as measured by hydrogen temperature-programmed reduction (H2-TPR). Methods of making and using the same are also provided.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: August 1, 2023
    Assignee: BASF CORPORATION
    Inventors: Yuejin Li, Xiaolai Zheng, Stanley Roth, Olga Gerlach, Andreas Sundermann
  • Patent number: 11700844
    Abstract: A pest control and/or detection system generally includes an electrically conductive bait matrix including at least one carrier material that is at least one of palatable, a phagostimulant and/or consumable and/or displaceable by pests, and a plurality of electrically conductive particles. The electrically conductive particles are substantially randomly interspersed throughout the at least one carrier material. The at least one carrier material includes a thermoplastic material and/or a resin.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: July 18, 2023
    Assignee: BASF Corporation
    Inventors: James W. Austin, Cheryl Ann Leichter, Kenneth S. Brown
  • Patent number: 11697110
    Abstract: The invention provides a catalyst composition, including a mixture of catalytically active particles and a magnetic material, such as superparamagnetic iron oxide nanoparticles, capable of inductive heating in response to an applied alternating electromagnetic field. The catalytically active particles will typically include a base metal, platinum group metal, oxide of base metal or platinum group metal, or combination thereof, and will be adapted for use in various catalytic systems, such as diesel oxidation catalysts, catalyzed soot filters, lean NOx traps, selective catalytic reduction catalysts, ammonia oxidation catalysts, or three-way catalysts.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: July 11, 2023
    Assignee: BASF CORPORATION
    Inventors: Xiaofan Yang, Matthew Tyler Caudle
  • Patent number: 11691116
    Abstract: A cyclic metals deactivation system unit for the production of equilibrium catalyst materials including a cracker vessel configured for cracking and stripping a catalyst material; and a regenerator vessel in fluid communication with the cracker vessel, the regenerator vessel configured for regeneration and steam deactivation of the catalyst material.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: July 4, 2023
    Assignee: BASF CORPORATION
    Inventors: James C. Fu, Chandrashekhar Kelkar, Roman Matlin, Johannes Mang, Andreas Mueller
  • Patent number: 11691106
    Abstract: A selective catalytic reduction catalyst for the treatment of an exhaust gas stream of a passive ignition engine, the catalyst comprising a porous wall-flow filter substrate comprising an inlet end, an outlet end, a substrate axial length (w) extending between the inlet end and the outlet end, and a plurality of passages defined by porous internal walls of the porous wall flow filter substrate; wherein the catalyst further comprises a first coating, said first coating extending over x % of the substrate axial length from the inlet end toward the outlet end of the substrate, x being in the range of from 10 to 100, wherein the first coating comprises copper and an 8-membered ring pore zeolitic material; wherein the catalyst further comprises a second coating, the second coating extending over y % of the substrate axial length from the outlet end toward the inlet end of the substrate, y being in the range of from 20 to 90, wherein the second coating comprises copper, and optionally an 8-membered ring pore zeolit
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: July 4, 2023
    Assignee: BASF Corporation
    Inventors: Matthias Peter, Susanne Stiebels, Karifala Dumbuya, Claudia Zabel
  • Patent number: 11691125
    Abstract: The present invention relates to a catalyst for the oxidation of NO, for the oxidation of ammonia, for the oxidation of HC and for the selective catalytic reduction of NOx, comprising a flow through substrate comprising an inlet end, an outlet end, a substrate axial length extending from the inlet end to the outlet end and a plurality of passages defined by internal walls of the flow through substrate extending therethrough; a first coating comprising one or more of a vanadium oxide and a zeolitic material comprising one or more of copper and iron; a second coating comprising a first platinum group metal component supported on a non-zeolitic first oxidic material and further comprising one or more of a vanadium oxide and a zeolitic material comprising one or more of copper and iron; optionally a third coating comprising a second platinum group metal component supported on a second oxidic material; wherein the third coating is disposed on the surface of the internal walls and under the second coating over z %
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: July 4, 2023
    Assignee: BASF Corporation
    Inventors: Robert Dorner, Ansgar Wille, Kevin David Beard
  • Patent number: 11684906
    Abstract: A catalyst composition comprising MgO, Al2O3 and one or more further alkaline earth metal oxides, provides for outstanding catalytic production of propylene when employed together with a metathesis catalyst.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: June 27, 2023
    Assignee: BASF CORPORATION
    Inventors: Ibrahim Ilgaz Soykal, Burcu Bayram, Knut Wassermann, Joseph C. Dellamorte
  • Patent number: 11674150
    Abstract: Products are provided that improve overall plant vigor and yield by combining agriculturally effective amounts of at least one spore-forming bacterium and at least one optional insect control agent to a genetically modified plant, plant part, or seed. This product is particularly effective in the presence of plant parasitic nematode and fungal species. Use of the product leads to an overall reduction in crop losses caused by either plant parasitic nematodes or fungi and this reduction is much greater than using genetically modified seed with just an insect control agent. According to some embodiments, the use of the product results in about a 2%-10% increase in soybean bushel yield, 3%-6.5% increase in cotton yield, and 3%-8% in corn bushel yield. Methods for utilizing and manufacturing the combination are also provided.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: June 13, 2023
    Assignee: BASF Corporation
    Inventor: Jennifer Riggs
  • Publication number: 20230172182
    Abstract: A pest control and/or detection system generally includes an electrically conductive bait matrix including at least one carrier material that is at least one of palatable, a phagostimulant and/or consumable and/or displaceable by pests, and a plurality of electrically conductive particles. The electrically conductive particles are substantially randomly interspersed throughout the at least one carrier material. The at least one carrier material includes a thermoplastic material and/or a resin.
    Type: Application
    Filed: May 17, 2021
    Publication date: June 8, 2023
    Applicant: BASF Corporation
    Inventors: James W. Austin, Cheryl Ann Leichter, Kenneth S. Brown
  • Patent number: 11660585
    Abstract: Disclosed are zeolite catalysts having the CHA crystal structure with a low silica to alumina ratio, as well as articles and systems incorporating the catalysts and methods for their preparation and use. The catalysts can be used to reduce NOx from exhaust gas streams, particularly those emanating from gasoline or diesel engines.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: May 30, 2023
    Assignee: BASF Corporation
    Inventors: Ivor Bull, Ahmad Moini, Mukta Rai
  • Patent number: 11660567
    Abstract: Mixed adsorbent/desiccant beds comprising in some embodiments from about 20 vol % (volume percent) to about 90 vol % of one or more adsorbents and from about 10 vol % to about 80 vol % of one or more desiccants, based on the total volume of the adsorbent/desiccant mixture, prevent water reflux during thermal regeneration of adsorption beds in gas processing plants and methods.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: May 30, 2023
    Assignee: BASF Corporation
    Inventors: William B. Dolan, Michael LoCascio
  • Patent number: 11660586
    Abstract: A process for preparing a catalyst comprising a zeolitic material comprising copper, the process comprising (i) preparing an aqueous mixture comprising water, a zeolitic material comprising copper, a source of copper other than the zeolitic material comprising copper, and a non-zeolitic oxidic material selected from the group consisting of alumina, silica, titania, zirconia, ceria, a mixed oxide comprising one or more of Al, Si, Ti, Zr, and Ce and a mixture of two or more thereof; (ii) disposing the mixture obtained in (i) on the surface of the internal walls of a substrate comprising an inlet end, an outlet end, a substrate axial length extending from the inlet end to the outlet end and a plurality of passages defined by internal walls of the substrate extending therethrough; and optionally drying the substrate comprising the mixture disposed thereon; (iii) calcining the substrate obtained in (ii).
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: May 30, 2023
    Assignee: BASF Corporation
    Inventors: Matthias Peter, Karifala Dumbuya, Miriam Schubert, Ahmad Moini, Yu Dai, Stefan Maurer, Haiyang Zhu, Yi Liu, Wen-Mei Xue, Ming-Ming Wei, Maria Heenemann
  • Patent number: 11648534
    Abstract: The present invention provides an oxidation catalyst composition suitable for at least partial conversion of gaseous hydrocarbon emissions, e.g., methane. The oxidation catalyst composition includes at least one platinum group metal (PGM) component supported onto a porous zirconia-containing material that provides an effect on hydrocarbon conversion activity. The porous zirconia-containing material is at least 90% by weight in the monoclinic phase. Furthermore, the PGM component can comprise at least one platinum group metal in the form of colloidally deposited nanoparticles. The oxidation catalyst composition can be used in the treatment of emissions from lean compressed natural gas engines.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: May 16, 2023
    Assignee: BASF CORPORATION
    Inventors: Xinyi Wei, Olga Gerlach, Emily Schulman, Andreas Sundermann, Stanley Roth, Limiao An
  • Patent number: 11633726
    Abstract: The present disclosure generally provides a catalyst composition comprising a zeolite containing iron and/or copper with a reduced amount of extra-framework aluminum. The catalyst composition is useful to catalyze the reduction of nitrogen oxides in exhaust gas in the presence of a reductant.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: April 25, 2023
    Assignee: BASF Corporation
    Inventors: Ivan Petrovic, Subramanian Prasad, Joseph Palamara
  • Publication number: 20230114285
    Abstract: Provided are processes of removing lithium from an electrochemically active composition. The process of removing lithium from an electrochemically active composition may include providing an electrochemically active composition and combining the electrochemically active composition with a strong oxidizer optionally at a pH of 1.5 or greater for a lithium removal time. The electrochemically active composition may include Li, Ni, and O. The electrochemically active composition may optionally have an initial Li/M at % ratio of 0.8 to 1.3. According to some embodiments of the present disclosure, the lithium removal time may be such that a second Li/M at % ratio following the lithium removal time is 0.6 or less, thereby forming a delithiated electrochemically active composition.
    Type: Application
    Filed: March 9, 2020
    Publication date: April 13, 2023
    Applicant: BASF Corporation
    Inventors: William C. MAYS, Martin Lawrence PANCHULA, Dieter G. VON DEAK, Benjamin REICHMAN, Diana F. WONG
  • Patent number: 11624340
    Abstract: The present disclosure relates to hydrocarbon emission control systems. More specifically, the present disclosure relates to substrates coated with hydrocarbon adsorptive coating compositions and evaporative emission control systems for controlling evaporative emissions of hydrocarbons from motor vehicle engines and fuel systems. The hydrocarbon adsorptive coating compositions include particulate carbon having a BET surface area of at least about 1300 m2/g, and at least one of (i) a butane affinity of greater than 60% at 5% butane; (ii) a butane affinity of greater than 35% at 0.5% butane; (iii) a micropore volume greater than about 0.2 mug and a mesopore volume greater than about 0.5 ml/g.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: April 11, 2023
    Assignee: BASF CORPORATION
    Inventors: Chen Chen, Wolfgang Ruettinger, Steven Chin, Laif R Alden, Akash Abraham