Patents Assigned to BASF
  • Patent number: 9005367
    Abstract: A liquid composition comprising (A) at least one polar organic solvent, selected from the group consisting of solvents exhibiting in the presence of from 0.06 to 4% by weight of dissolved tetramethylammonium hydroxide (B), the weight percentage being based on the complete weight of the respective test solution (AB), a constant removal rate at 50° C. for a 30 nm thick polymeric barrier anti-reflective layer containing deep UV absorbing chromophoric groups, (B) at least one quaternary ammonium hydroxide, and (C) at least one aromatic amine containing at least one primary amino group, a method for its preparation and a method for manufacturing electrical devices, employing the liquid composition as a resist stripping composition and its use for removing negative-tone and positive-tone photoresists and post etch residues in the manufacture of 3D Stacked Integrated Circuits and 3D Wafer Level Packagings by way of patterning Through Silicon Vias and/or by plating and bumping.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: April 14, 2015
    Assignee: BASF SE
    Inventor: Andreas Klipp
  • Patent number: 9006457
    Abstract: The invention relates to reactive ionic liquids containing organic cations with groups or substituents which are susceptible to electrochemical reduction and anions obtained from fluoroalkyl phosphates, fluoroalkyl phosphinates, fluoroalkyl phosphonates, acetates, triflates, imides, methides, borates, phosphates and/or aluminates, for use in electrochemical cells, such as lithium ion batteries and double-layer capacitors.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: April 14, 2015
    Assignee: BASF SE
    Inventors: Michael Schmidt, Nikolai (Mykola) Ignatyev, William-Robert Pitner
  • Patent number: 9005644
    Abstract: The present disclosure relates to pesticidal compositions and to methods for controlling pests such as insects and other arthropods. More particularly, the disclosure relates to a pesticidal compositions containing mineral oil and one or more additional components which, when used in combination, act synergistically to control insect and pest populations.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: April 14, 2015
    Assignee: BASF Corporation
    Inventor: Steven R. Sims
  • Patent number: 9006725
    Abstract: The invention concerns apolymer of the formula (I): wherein: M1 is an optionally substituted dithienophthalimide formula (II): wherein: X is N or C—R, wherein R is H or a C1-C40 alkyl group, R2, at each occurrence, is independently selected from H, a C1-40 alkyl group, a C2-40 alkenyl group, a C1-40 haloalkyl group, and a monocyclicor polycyclic moiety, wherein: each of the C1-40 alkyl group, the C2-40 alkenyl group, and the C1-40 haloalkyl group can be optionally substituted with 1-10 substituents independently selected from a halogen, CN, —NO2, OH, NH2, —NH(C1-20 alkyl), N(C1-20 alkyl)2, —S(O)2OH, —CHO, —C(O)—C1-20 alkyl, —C(O)OH, —C(O)—OC1-20 alkyl, —C(O)NH2, —C(O)NH—C1-20 alkyl, —C(O)N(C1-20 alkyl)2, —OC1-20 alkyl, —SiH3, —SiH(C1-20 alkyl)2, —SiH2(C1-20 alkyl), and —Si(C1-20 alkyl)3; and the monocyclic or polycyclic moiety can be covalently bonded to the imide nitrogen via an optional linker, and can be optionally substituted with 1-5 substituentsindependently selected from a halogen, oxo, —CN, —NO2, OH,
    Type: Grant
    Filed: July 4, 2012
    Date of Patent: April 14, 2015
    Assignee: BASF SE
    Inventors: Hiroyoshi Noguchi, Florian Doetz, Ashok Kumar Mishra, Subramanian Vaidyanathan, Mai Minh-Tien
  • Patent number: 9005510
    Abstract: Processes for forming polymer fibers, comprising: (a) providing a colloidal dispersion of at least one essentially water-insoluble polymer in an aqueous medium; and (b) electrospinning the colloidal dispersion; polymer fibers prepared by such processes; and colloidal dispersions comprising: at least one essentially water-insoluble polymer in an aqueous medium; and at least 10% by weight of a water-soluble polymer having a solubility in water of at least 0.1% by weight.
    Type: Grant
    Filed: February 18, 2006
    Date of Patent: April 14, 2015
    Assignee: BASF SE
    Inventors: Michael Ishaque, Andreas Greiner, Joachim H. Wendorff
  • Patent number: 9006494
    Abstract: The present invention relates to a process for producing vanillin from an aqueous, basic vanillin-comprising composition, in particular from a composition as arises in the oxidation, especially in the oxidation by electrolysis, of aqueous alkaline lignin-comprising compositions, comprising at least one treatment of an aqueous, basic vanillin-comprising composition, in particular the treatment of a composition as arises in the oxidation, especially in the oxidation by electrolysis, of aqueous alkaline lignin-comprising compositions, with a basic adsorbent, in particular an anion exchanger.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: April 14, 2015
    Assignee: BASF SE
    Inventors: Florian Stecker, Andreas Fischer, Axel Kirste, Agnes Voitl, Chung Huan Wong, Siegfried Waldvogel, Carolin Regenbrecht, Dominik Schmitt, Marius Franziskus Hartmer
  • Patent number: 9006129
    Abstract: A novel catalyst useful in the ethynylation of formaldehyde to butynediol is formed by precipitating copper and bismuth from a salt solution of such metals, utilizing an alkali metal hydroxide as the precipitating agent to deposit copper and bismuth hydroxide as a coating around a siliceous carrier particle.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: April 14, 2015
    Assignee: BASF Corporation
    Inventors: Rostam Madon, Peter Nagel, Scott Hedrick, Deepak Thakur
  • Patent number: 9005871
    Abstract: Compounds of the formula (I), wherein Ar1 is for example phenylene or biphenylene both unsubstituted or substituted; Ar2 and Ar3 are for example independently of each other phenyl, naphthyl, biphenylylyl or heteroaryl, all optionally substituted; or Ar1 and Ar2 for example together with a direct bond, O, S or (CO), form a fused ring system; R is for example hydrogen, C3-C30cycloalkyl or C1-C18alkyl; and R1, R2 and R3 independently of each other are for example C1-C10haloalkyl; are effective photoacid generators (PAG).
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: April 14, 2015
    Assignee: BASF SE
    Inventors: Hitoshi Yamato, Toshikage Asakura, Yuichi Nishimae
  • Patent number: 9006142
    Abstract: The present invention comprises formulations comprising at least one pesticide and at least one co-polymer comprising a) 1-vinyl-2-pyrrolidinone as comonomer a); and b) 60-99 wt % at least one comonomer b) chosen from the group of laurylacrylate and vinyl ester of neodecanoic acid in polymerized form, methods of combating harmful insects and/or phytopathogenic fungi, a method of controlling undesired vegetation and methods of improving the health of plants based on the afore-mentioned formulations.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: April 14, 2015
    Assignee: BASF SE
    Inventors: Yvonne Dieckmann, Michael Ishaque, Ingo Münster, Laurent Picard, Wolfgang Kerl, Jürgen Langewald, Klaus Kreuz, Harald Köhle, Felix Christian Görth
  • Publication number: 20150099843
    Abstract: The present invention relates to aqueous binder compositions which are based on aqueous multistage polymer dispersions, to the uses of such binder compositions, and to coating compositions comprising them. The aqueous binder composition comprises: a) a polymer P in the form of an aqueous multistage polymer dispersion of dispersed polymer particles, where the polymer particles comprise a first polymer having a glass transition temperature of at least 30° C. and being made of ethylenically unsaturated monomers M-A, and a second polymer having a glass transition temperature of not more than 20° C. and being made of ethylenically unsaturated monomers M-B, where the ethylenically unsaturated monomers M-A and M-B together comprise: i. 85% to 99.45% by weight, preferably 87.5% to 97% by weight and in particular 90% to 95.5% by weight, based in each case on the total amount of monomers M-A+M-B, of at least one neutral, monoethylenically unsaturated monomer M1 having a solubility in water of at most 50 g/l at 25° C.
    Type: Application
    Filed: May 23, 2013
    Publication date: April 9, 2015
    Applicant: BASF SE
    Inventors: Jens Hartig, Manfred Dargatz, Karl Haeberle, Sebastian Enck
  • Publication number: 20150099685
    Abstract: An alkaline detergent is described which includes the use of a copolymer in combination with an alkali metal hydroxide. The detergent maintains cleaning functions and also prevents hard water scaling, for example at application temperatures of between 145-180 degrees Fahrenheit and with a pH of 9.5 to about 13.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 9, 2015
    Applicants: BASF SE, Ecolab USA Inc.
    Inventors: Carter M. Silvernail, Erik C. Olson, Kerrie Walters, Juergen Detering, Arend Jouke Kingma, James S. Dailey
  • Publication number: 20150099686
    Abstract: A highly alkaline detergent is described which includes the use of a carboxylic acid terpolymer in combination with an alkali metal hydroxide. The detergent maintains cleaning functions and also prevents hard water scaling at application temperatures, for example at temperatures of between about 145-180 degrees Fahrenheit and, for example, at a pH of 9.5 to about 13.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 9, 2015
    Applicants: BASF SE, ECOLAB USA INC.
    Inventors: Carter M. Silvernail, Erik C. Olson, Kerrie Walters, Juergen Detering, Arend Jouke Kingma, James S. Dailey
  • Publication number: 20150099687
    Abstract: Stability enhancement agents for use in a solidification matrices and solid detergent compositions are described. Stability enhancement is provided by a hydratable salt, water and a carboxylic acid terpolymer forming a dimensionally stable solid compositions. Preferred carboxylic acid terpolymers include from about 40 to 90% by weight of a carboxylic acid monomer, anhydride or salt thereof, from about 4 to 40% by weight of a monomer comprising sulfo groups, and from about 4 to 40% by weight of a nonionic monomer set forth in formula (I). The stability enhancement composition for use in solid detergent compositions are preferably biodegradable and may be substantially free of phosphate and/or NTA-free and provide beneficial hard water scale control.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 9, 2015
    Applicants: BASF SE, ECOLAB USA INC.
    Inventors: Kerrie Walters, Carter M. Silvernail, Juergen Detering, Arend Jouke Kingma, James S. Dailey
  • Publication number: 20150099196
    Abstract: The present invention relates to sodium oxygen cells comprising (A) at least one anode comprising sodium, (B) at least one gas diffusion electrode comprising at least one porous support, and (C) a liquid electrolyte comprising at least one aprotic glycol diether with a molecular weight Mn of not more than 350 g/mol. The present invention further relates to the use of the invention sodium oxygen cells and to a process for preparing sodium supperoxide of formula NaO2.
    Type: Application
    Filed: March 20, 2013
    Publication date: April 9, 2015
    Applicant: BASF SE
    Inventors: Arnd Garsuch, Anna Katharina Duerr, Juergen Janek, Philipp Adelhelm, Pascal Hartmann
  • Publication number: 20150097136
    Abstract: A description is given of a nonaqueous sound deadener composition comprising (a) a nonpulverulent, solvent-free polyacrylate binder having a K value in the range from 10 to 35, measured as a 1% strength solution in tetrahydrofuran; and (b) inorganic fillers. Also described is a method for damping oscillations or vibrations of components of vehicles and machines, using the sound deadener composition of the invention.
    Type: Application
    Filed: April 25, 2013
    Publication date: April 9, 2015
    Applicant: BASF SE
    Inventors: Dirk Wulff, Ulrike Licht, Peter Preishuber-Pfluegl, Axel Weiss
  • Publication number: 20150099361
    Abstract: A process for the manufacture of semiconductor devices is provided. The process comprises the chemical-mechanical polishing of a substrate or layer containing at least one III-V material in the presence of a chemical-mechanical polishing composition (Q1) comprising (A) inorganic particles, organic particles, or a mixture or composite thereof, (B) a polymer comprising at least one N-heterocycle, and (M) an aqueous medium and whereas Q1 has a pH of from 1.5 to 4.5.
    Type: Application
    Filed: April 29, 2013
    Publication date: April 9, 2015
    Applicant: BASF SE
    Inventors: Diana Franz, Bastian Marten Noller
  • Patent number: 8999491
    Abstract: The present invention relates to single face or double faced corrugated fiberboard comprising one or more corrugated plies, wherein at least one of the linerboard plies or corrugated plies is a paper-film assembly comprising: i) a 30 to 600 g/m2 grammage papery material of construction, ii) a biodegradable polymeric coating from 1 to 100 ?m in thickness. More particularly, the present invention relates to single face or double faced and/or corrugated fiberboard comprising one or more corrugated plies, wherein at least one of the linerboard plies or corrugated plies is a paper-film assembly comprising: i) a 30 to 600 g/m2 grammage papery material of construction as outer layer, ii) a biodegradable polymeric coating from 1 to 100 ?m in thickness as interlayer, and iii) a 30 to 600 g/m2 grammage papery material of construction as inner layer. The present invention further relates to methods of producing this corrugated fiberboard.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: April 7, 2015
    Assignee: BASF SE
    Inventors: Rainer Blum, Gabriel Skupin, Hubertus Kröner, Jurgen Keck
  • Patent number: 8999889
    Abstract: The invention relates to substituted ketonic isoxazoline compounds of formula (I), to the enantiomers, diastereomers and salts thereof and to compositions comprising such compounds. The invention also relates to the use of the substituted ketonic isoxazoline compounds, of their salts or of compositions comprising them for combating animal pests. Furthermore the invention relates also to methods of applying such substituted ketonic isoxazoline compounds. The substituted ketonic isoxazoline compounds of the present invention are defined by the following formula I: wherein A1 to A4, R1 to R3, (R4)p, (R5)q, X and (G)m are defined as in the description.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: April 7, 2015
    Assignee: BASF SE
    Inventors: Karsten Koerber, Florian Kaiser, Wolfgang von Deyn, Steffen Gross, Joachim Dickhaut, Prashant Deshmukh, Nina Gertrud Bandur, Arun Narine, Deborah L. Culbertson, Douglas D. Anspaugh, Franz Josef Braun
  • Patent number: 9001029
    Abstract: A detector (110) for optically detecting at least one object (112) is proposed. The detector (110) comprises at least one optical sensor (114). The optical sensor (114) has at least one sensor region (116). The optical sensor (114) is designed to generate at least one sensor signal in a manner dependent on an illumination of the sensor region (116). The sensor signal, given the same total power of the illumination, is dependent on a geometry of the illumination, in particular on a beam cross section of the illumination on the sensor area (118). The detector (110) furthermore has at least one evaluation device (122). The evaluation device (122) is designed to generate at least one item of geometrical information from the sensor signal, in particular at least one item of geometrical information about the illumination and/or the object (112).
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: April 7, 2015
    Assignee: BASF SE
    Inventors: Ingmar Bruder, Felix Eickemeyer, Peter Erk, Rüdiger Sens, Stephan Irle, Haroun Al Mohamedi, Andreas Pelster, Erwin Thiel
  • Patent number: 9000227
    Abstract: The present invention to a process for preparing 2-alkenals of the formula I in which R1 is selected from hydrogen and C1-C4-alkyl; and R2 is selected from hydrogen, C1-C12-alkyl, C2-C12-alkenyl, C4-C8-cycloalkyl and C6-C10-aryl, wherein C1-C12-alkyl and C1-C12-alkenyl may be substituted with C5-C7-cycloalkyl or C5-C7-cylcoalkenyl; comprising dehydrogenating an alkenol of the formula II, an alkenol of the formula III or a mixture thereof, wherein R1 and R2 are each as defined above, wherein the alkenol II, the alkenol III or a mixture thereof is brought into contact with a catalytic system comprising at least one ligand and a metal compound selected from ruthenium(II) compounds and iridium(I) compounds, and wherein the hydrogen formed during the dehydrogenation is removed from the reaction mixture by: v) reaction with a reoxidant selected from C3-C12-alkanones, C4-C9-cycoalkanones, benzaldehyde and mixtures thereof; and/or vi) purely physical means.
    Type: Grant
    Filed: November 23, 2012
    Date of Patent: April 7, 2015
    Assignee: BASF SE
    Inventors: Thomas Schaub, Bernhard Brunner, Klaus Ebel, Rocco Paciello