Patents Assigned to BASF
  • Patent number: 9011727
    Abstract: Blending an electrically active, anodically coloring, electrochromic polymer with a non-electrochromic, non-electrically conductive binder polymer greatly enhances the performance of the anodically coloring, electrochromic polymer in an electrochromic device over time. In addition to improved physical characteristics of the blend, e.g., film build, durability etc, the coloristic properties, including color space and color strength, of the device comprising the blend are more durable than when using the neat polymer, and in certain instances, the color space and color intensity provided by the blend is superior to that available from the neat polymer.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: April 21, 2015
    Assignee: BASF SE
    Inventors: Nancy Cliff, David Yale, Deanna Rodovsky, Jennifer Jankauskas
  • Patent number: 9011675
    Abstract: The invention is directed to a process for the removal of contaminating sulfur compounds, more in particular thiophenic sulfur compounds, from hydrocarbon feedstocks, said process comprising contacting the feedstock in the presence of hydrogen with a sulfided nickel adsorbent, of which adsorbent the rate constant for tetralin hydrogenation activity at 150° C. is less than 0.01 l/s.g cat and wherein in said adsorbent part of the nickel is present in the metallic form.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: April 21, 2015
    Assignee: BASF Corporation
    Inventors: Bernard Hendrik Reesink, Nico Van Gasteren
  • Patent number: 9011815
    Abstract: The present invention relates to an organotemplate-free synthetic process for the production of a zeolitic material having a BEA framework structure comprising YO2 and optionally comprising X2O3, wherein said process comprises the steps of (1) preparing a mixture comprising seed crystals and at least one source for YO2; and (2) crystallizing the mixture; wherein Y is a tetravalent element, and X is a trivalent element, wherein the zeolitic material optionally comprises at least one alkali metal M, wherein when the BEA framework additionally comprises X2O3, the mixture according to step (1) comprises at least one source for X2O3, and wherein the seed crystals comprise zeolitic material having a BEA framework structure, preferably zeolite Beta.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: April 21, 2015
    Assignee: BASF SE
    Inventors: Feng-Shou Xiao, Bin Xie, Ulrich Mueller, Bilge Yilmaz
  • Patent number: 9011790
    Abstract: A reactor for carrying out a three-phase reaction of a liquid phase, a gaseous phase, and a catalyst over a fixed catalyst bed is disclosed. The liquid and gaseous phases are passed through the reactor via a mixing and distribution device positioned over the fixed catalyst bed. The mixing and distribution device includes a trough distributor for the liquid phase, having trough-shaped channels, outlet tubes in the trough-shaped channels for the liquid phase, a distributor plate below the trough distributor, and vertical nozzles, having one or more openings for the gaseous phase and one or more openings, arranged below the openings for the gaseous phase. For entry of the liquid phase, the nozzles are installed so that, at a predetermined liquid feed rate, the surface of the liquid on the distributor plate is below the openings for the gaseous phase and above the openings for the liquid phase.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: April 21, 2015
    Assignee: BASF SE
    Inventors: Stefan Iselborn, Andreas Daiss, Reiner Geier, Marcus Bechtel, Michael Wille, Benjamin Hepfer, John Sauter
  • Patent number: 9012707
    Abstract: The invention relates to a process for the autothermal gas-phase dehydrogenation of a hydrocarbon-comprising gas stream by means of an oxygen-comprising gas stream over a heterogeneous catalyst configured as a monolith to give a reaction gas mixture and regeneration of the catalyst in a reactor in the form of a cylinder or prism, wherein the reactor is operated alternately in the production mode of the autothermal gas-phase dehydrogenation and in the regeneration mode.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: April 21, 2015
    Assignee: BASF SE
    Inventors: Gerhard Olbert, Ulrike Wegerle, Grigorios Kolios, Albena Kostova
  • Publication number: 20150105568
    Abstract: Provided are catalysts suitable for the production of tetrahydrofuran from 1,4-butanediol. Also provided are methods of use of these catalyst, as well as catalyst systems. The catalysts described herein contain only Lewis acidity, but not Broønsted acidity, which results in decreased production of ether byproducts.
    Type: Application
    Filed: November 21, 2014
    Publication date: April 16, 2015
    Applicant: BASF Corporation
    Inventors: Rostam Jal Madon, Rolf Pinkos, Olga Osetska, Deepak S. Thakur, Ron Jagta
  • Publication number: 20150105258
    Abstract: Ready-to-use foamable pesticide compositions that contain a particulate pesticide suspended therein and applicators for dispensing such compositions. Methods for treating pests such as arthropods by contacting pests with such compositions are also provided.
    Type: Application
    Filed: December 17, 2014
    Publication date: April 16, 2015
    Applicant: BASF CORPORATION
    Inventors: Terrence R. Burke, Henry Wayne Moran, Jonathan D. Berger, James H. Cink
  • Publication number: 20150104573
    Abstract: The present invention relates to a process for preparing a coloured effect pigment, comprising: (i) coating aluminium-based substrate particles in an aqueous coating medium with at least one metal oxide layer, wherein the metal oxide is selected from a titanium oxide, an iron oxide, or any mixture thereof, (ii) providing a mixture of the coated aluminium-based substrate particles and a particulate inorganic non-metallic material in the aqueous coating medium by adding the particulate inorganic non-metallic material to the aqueous coating medium, and (iii) separating the mixture of the coated aluminium-based substrate particles and the particulate inorganic non-metallic material from the aqueous coating medium and subjecting the separated mixture to a thermal drying step so as to obtain a dry coloured effect pigment material.
    Type: Application
    Filed: May 10, 2013
    Publication date: April 16, 2015
    Applicant: BASF SE
    Inventors: Aron Wosylus, Raimund Schmid
  • Publication number: 20150104658
    Abstract: The present invention relates to the use of aqueous multistage polymer dispersions obtainable by free-radically initiated aqueous emulsion polymerization, having a soft phase and a hard phase and having a hard-to-soft stage ratio of 25% to 95% by weight to 75% to 5% by weight, the glass transition temperature (Tg) of the soft phase, as first stage, being ?30 to 0° C. and that of the hard phase, as second stage, being 20 to 60° C., comprising at least one monomer of the general formula I in which the variables have the following definitions: n=0 to 2, R1, R2, R3=independently of one another hydrogen or methyl group, X?O or NH, Y?H, alkali metal or NH4, to coat metal sheets.
    Type: Application
    Filed: June 4, 2013
    Publication date: April 16, 2015
    Applicant: BASF SE
    Inventors: Ekkehard Jahns, Hans-Juergen Denu, Sebastian Roller, Alexander Kurek
  • Patent number: 9006481
    Abstract: The invention relates to a process for preparing isocyanates by reacting the corresponding amines with phosgene in the gas phase, optionally in the presence of an inert medium, in which phosgene and amine are first evaporated and then superheated further to reaction temperature, and the superheated phosgene and amine are mixed and fed to a reactor in which the phosgene and the amine are converted to the isocyanate, wherein the residence time of the phosgene at temperatures greater than 300° C. is not more than 5 s, and/or the temperature of heat transfer surfaces in contact with phosgene is not more than 20 K above the phosgene temperature to be established. The invention further relates to an apparatus for preparing isocyanates by reacting the corresponding amines with phosgene in the gas phase.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: April 14, 2015
    Assignee: BASF SE
    Inventors: Torsten Mattke, Carsten Knoesche, Bernd Rumpf, Eckhard Stroefer
  • Patent number: 9005762
    Abstract: The use of aqueous polyurethane dispersions is described for composite foil lamination, where at least 10% by weight of the polyurethane derives from at least one amorphous polyester polyol.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: April 14, 2015
    Assignee: BASF SE
    Inventors: Axel Meyer, Karl-Heinz Schumacher, Christoph Kiener
  • Patent number: 9005472
    Abstract: An aqueous polishing agent, comprising, as the abrasive, at least one kind of polymer particles (A) finely dispersed in the aqueous phase and having at their surface a plurality of at least one kind of functional groups (a1) capable of interacting with the metals and/or the metal oxides on top of the surfaces to be polished and forming complexes with the said metals and metal cations, the said polymer particles (A) being preparable by the emulsion or suspension polymerization of at least one monomer containing at least one radically polymerizable double bond in the presence of at least one oligomer or polymer containing a plurality of functional groups (a1); graft copolymers preparable by the emulsion or suspension polymerization of at least one monomer containing at least one radically polymerizable double bond in the presence of at least one oligomeric or polymeric aminotriazine-polyamine condensate; and a process for the chemical and mechanical polishing of patterned and unstructured metal surfaces making
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: April 14, 2015
    Assignee: BASF SE
    Inventors: Vijay Immanuel Raman, Ilshat Gubaydullin, Mario Brands, Yuzhuo Li, Maxim Peretolchin
  • Patent number: 9006158
    Abstract: Polytetrahydrobenzoxazines and bistetrahydrobenzoxazines, obtainable by (A) reacting at least one diamine of the formula H2N-A-NH2 with a C1- to C12-aldehyde and a C1- to C8-alkanol at 20 to 80° C. with elimination and removal of water, (B) reacting the condensation product from (A) with a phenol which bears a long-chain substituent at 30 to 120° C., and optionally (C) heating the reaction product from (B) to 125 to 280° C. The resulting polytetrahydrobenzoxazines and bistetrahydrobenzoxazines are suitable as fuel or lubricant additives, especially as detergent additives for diesel fuels.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: April 14, 2015
    Assignee: BASF SE
    Inventors: Arno Lange, Harald Böhnke, Wolfgang Grabarse, Hannah Maria König, Markus Hansch, Ludwig Völkel, Ivette Garcia Castro
  • Patent number: 9006485
    Abstract: The present invention relates to compounds of the formula (I) wherein R1 and R2 independently of one another are hydrogen, C1-C10-alkyl, C1-C10-haloalkyl, C3-C10-cycloalkyl, C3-C10-halocycloalkyl, C2-C10-alkenyl, C2-C10-haloalkenyl or together represent an aliphatic chain, or the like; R3 is halogen, cyano, C1-C8-alkyl, C1-C8-haloalkyl, C3-C8-cycloalkyl, C3-C8-halocycloalkyl, C2-C8-alkenyl, C2-C8-haloalkenyl, C1-C8-alkoxy, phenyl, or the like; R4 is hydrogen, C1-C10-alkyl, C1-C10-haloalkyl, C3-C8-cycloalkyl, C3-C8-halocycloalkyl, C2-C10-alkenyl, C2-C10-haloalkenyl, phenyl, or the like; t is 0 or 1; p is 0, 1, 2, 3 or 4. The present invention also relates to a process for preparing a compound of the formula (I) which comprises reacting a compound of the formula II with a compound of the formulae III or IV: where t, p, R1 R3, R3 and R4 are as defined in any of claims 1 to 6 and where A? is an equivalent of an anion having a pKB of at least 10 (determined under standard conditions in water).
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: April 14, 2015
    Assignee: BASF SE
    Inventors: Karsten Koerber, Prashant Deshmukh, Florian Kaiser, Michael Rack, Timo Frasetto, Gemma Veitch, Markus Kordes, Marco Naujok
  • Patent number: 9006361
    Abstract: Aqueous dispersions of polymers which obtained by free radical suspension polymerization or free radical miniemulsion polymerization of ethylenically unsaturated monomers in an oil-in-water emulsion whose disperse phase comprises at least one fluorescent dye dissolved in at least one ethylenically unsaturated monomer and has an average particle diameter of at least 1 ?m, in the presence of at least one surface-active compound and at least 0.5% by weight, based on the monomers, of at least one hydrophobic, nonpolymerizable, organic compound, of a hydrophobic polymer of at least one C2- to C˜-olefin having a molar mass Mw of up to 10000, of a siloxane having a molar mass Mw of up to 5000 and/or polystyrene having a molar mass Mw of up to 10000, and of the powders obtainable from these polymer dispersions in each case by drying and comprising at least one fluorescent dye for marking of materials.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: April 14, 2015
    Assignee: BASF SE
    Inventors: Sven Holger Behrens, Simon Champ, Ulrike Geissler, Hans-Peter Hentze, Marc Rudolf Jung, Hans-Peter Kaub, Simon Nord
  • Patent number: 9006339
    Abstract: A process for preparing mechanically stabilized polyazoles, comprising the following steps: I) treating at least one polyazole having at least one amino group in a repeat unit with a solution comprising (i) at least one strong acid and (ii) at least one stabilizing reagent, the total content of stabilizing reagents in the solution being in the range from 0.01 to 30% by weight, II) performing the stabilization reaction directly and/or in a subsequent processing step by heating to a temperature greater than 25° C., the stabilizing reagent used being at least one polyvinyl alcohol. The polyazoles thus obtainable are notable especially for a high conductivity and a very good mechanical stability. They are therefore especially suitable for applications in fuel cells.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: April 14, 2015
    Assignee: BASF SE
    Inventors: Friederike Fleischhaker, Jörg Belack, Oliver Gronwald
  • Patent number: 9006495
    Abstract: The present invention relates to a process for the catalytic aldol condensation of aldehydes, in particular for preparing ?,?-unsaturated aldehydes, in a multiphase reactor.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: April 14, 2015
    Assignee: BASF SE
    Inventors: Roland Krokoszinski, Steffen Oehlenschläger, Rainer Papp, Jens Rudolph, Armin Ulonska
  • Patent number: 9005759
    Abstract: A pulverulent and mineral oil-free composition which is present as binary system and contains as main constituents a) from 5 to 40% by weight of at least one fatty acid derivative and/or fatty alcohol derivative, b) from 0.5 to 10% by weight of at least one silicone oil and c) from 20 to 85% by weight of at least one support material, with the components a) and b) having been applied to the support material c), is proposed. Suitable components a) are, in particular, fatty alcohol alkoxylates comprising ethylene oxide units and propylene oxide units. Polydimethylsiloxanes are particularly suitable representatives of silicone oils b). The support material c) is selected from the group consisting of chalk, dolomite, shell limestone and silica. The composition has a bimodal particle size distribution in the range from 10 to 120 ?m. Such compositions are used, in particular, as antifoams for dry mortar applications.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: April 14, 2015
    Assignee: BASF Construction Solutions GmbH
    Inventors: Markus Maier, Daniele Theissig, Klaus Prosiegel, Johann Goldbrunner
  • Patent number: 9006317
    Abstract: The present invention pertains to an additive combination comprising at least two sterically hindered amines, at least one further stabilizer, a dispersing agent and a plasticizer. The present invention also pertains to a composition comprising an organic material susceptible to degradation by light, oxygen and/or heat, and the additive combination and to the use and the process for stabilizing organic material against degradation by light, oxygen and/or heat by the additive combination.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: April 14, 2015
    Assignee: BASF SE
    Inventors: Eva Peregi, Benno Blickenstorfer, Frank Oliver Heinrich Pirrung, Petr Kvita
  • Patent number: 9006447
    Abstract: The present invention relates to a method for preparing 4-chloro-, 4-bromo- or 4-iodobenzaldehyde oximes and phenyl-substituted isoxazoline compounds prepared from these oximes.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: April 14, 2015
    Assignee: BASF SE
    Inventors: Karsten Koerber, Markus Kordes, Michael Rack, Wolfgang Von Deyn, Florian Kaiser