Patents Assigned to BASF
  • Publication number: 20120161061
    Abstract: Closed-cell extruded foam extruded foam with density in the range from 20 to 150 g/l and with a cell number in the range from 1 to 30 cells per mm is obtainable via (a) heating of a polymer component P, formed from P1) from 80 to 100% by weight (based on P) of one or more styrene-acrylonitrile copolymers (SAN), comprising a1) from 18 to 40% by weight (based on SAN) of copolymerized acrylonitrile, a2) from 60 to 82% by weight (based on SAN) of copolymerized styrene, and a3) from 0 to 22% by weight (based on SAN) of at least one copolymerized monomer from the group consisting of alkyl(meth)acrylates, (meth)acrylic acid, maleic anhydride and maleimides, P2) from 0 to 20% by weight (based on P) of one or more thermoplastic polymers from the group consisting of styrene copolymers, polyolefins, polyacrylates, polycarbonates (PC), polyesters, polyamides, polyether sulfones (PES), polyether ketones (PEK), and polyether sulfides, to form a polymer melt, (b) introduction of from 1 to 12% by weight (based on P) of
    Type: Application
    Filed: September 6, 2010
    Publication date: June 28, 2012
    Applicant: BASF SE
    Inventors: Klaus Hahn, Holger Ruckdäschel, Ingo Bellin, Peter Merkel, Markus Hartenstein
  • Publication number: 20120160320
    Abstract: An aqueous acidic etching solution suitable for texturing the surface of single crystal and polycrystal silicon substrates and containing, based on the complete weight of the solution, 3 to 10% by weight of hydrofluoric acid; 10 to 35% by weight of nitric acid; 5 to 40% by weight of sulfuric acid; and 55 to 82% by weight of water; a method for texturing the surface of single crystal and polycrystal silicon substrates comprising the step of (1) contacting at least one major surface of a substrate with the said aqueous acidic etching solution; (2) etching the at least one major surface of the substrate for a time and at a temperature sufficient to obtain a surface texture consisting of recesses and protrusions; and (3) removing the at least one major surface of the substrate from the contact with the aqueous acidic etching solution; and a method for manufacturing photovoltaic cells and solar cells using the said solution and the said texturing method.
    Type: Application
    Filed: September 9, 2010
    Publication date: June 28, 2012
    Applicants: GP SOLAR GmbH, BASF SE
    Inventors: Simon Braun, Julian Proelss, Ihor Melnyk, Michael Michel, Stefan Mathijssen
  • Patent number: 8207354
    Abstract: A process for preparing alkyl 2-alkoxymethylene-4,4-difluoro-3-oxobutyrates (VI) where R is methyl or ethyl, from crude reaction mixtures of alkyl 4,4-difluoroacetoacetates (I) by a) reacting ?where M is a sodium or potassium ion, and ?without additional solvent to form an enolate (V) b) releasing the corresponding alkyl 4,4-difluoroacetoacetate (I) from the enolate (V) by means of acid, c) removing the salt formed from cation M and acid anion as a solid and d) converting (I), without isolation from the crude reaction mixture, to the alkyl 2-alkoxymethylene-4,4-difluoro-3-oxobutyrate (VI), and the use of (VI) for preparing 1-methyl-3-difluoromethyl-pyrazol-3-ylcarboxyates VII
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: June 26, 2012
    Assignee: BASF SE
    Inventors: Volker Maywald, Sebastian Peer Smidt, Bernd Wolf, Christopher Koradin, Thomas Zierke, Michael Rack, Michael Keil
  • Patent number: 8206969
    Abstract: A protein having acrylation activity having a polypeptide sequence derived from SEQ ID NO: 1 or NO:2 by introducing at least one of the following amino acid substitutions: L278A, L278V, W104F, T42A, S47A.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: June 26, 2012
    Assignee: BASF SE
    Inventors: Bernhard Hauer, Cecilia Kvarnström Branneby, Rolf Schmid, Steffen Maurer, Peter Trodler, Danni Liu, Monika Müller
  • Patent number: 8206957
    Abstract: A process for preparing optically active saturated aldehydes or alcohols of the formula (2) from ?,?-unsaturated aldehydes of the formula (1) by reduction in the presence of an enoate reductase (i) having the polypeptide sequence SEQ ID No. 1 or 2, or (ii) having a polypeptide sequence which is at least 80% identical to the sequence of SEQ ID No. 1 or 2.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: June 26, 2012
    Assignee: BASF SE
    Inventors: Andreas Schädler, Thomas Friedrich, Rainer Stürmer, Sabine Rinck
  • Patent number: 8207327
    Abstract: The invention relates to a shell catalyst containing ruthenium as an active metal, alone or together with at least one other metal of the auxiliary group IB, VIIB or VIII of the periodical system of the elements (CAS version), and applied to a carrier containing silicon dioxide as a carrier material. The invention also relates to a method for producing said shell catalyst, and to a method for hydrogenating an organic compound containing hydrogenable groups, preferably for hydrogenating a carbocyclic aromatic group to form the corresponding carbocyclic aliphatic groups or for hydrogenating aldehydes to form the corresponding alcohols, using the inventive shell catalyst. The invention further relates to the use of the inventive shell catalyst for hydrogenating an organic compound containing hydrogenable groups, preferably for hydrogenating a carbocyclic aromatic group to form the corresponding carbocyclic aliphatic groups or for hydrogenating aldehydes to form the corresponding alcohols.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: June 26, 2012
    Assignee: BASF SE
    Inventors: Frederik Van Laar, Michael Becker, Ekkehard Schwab, Jochem Henkelmann, Peter Polanek
  • Patent number: 8206870
    Abstract: A membrane electrode assembly comprising two electrode separated by a polymer electrolyte membrane wherein the surfaces of the membrane are in contact with the electrodes so that the first electrode partially or totally covers the front of the membrane and the second electrode partially or totally covers the back of the membrane; two gasket layers wherein the first gasket layer partially covers the front of the membrane and/or the first electrode and the second gasket layer partially covers the back of the membrane and/or the second electrode the assembly also comprises a second gasket material on the front of the first gasket layer and on the back of the second gasket layer; each of the gasket layers comprises at least one recess; the second gasket material on the front of the first gasket layer is in contact with the second gasket material on the back of the second gasket layer.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: June 26, 2012
    Assignee: BASF Fuel Cell GmbH
    Inventors: Glen Hoppes, Raymond Puffer
  • Patent number: 8206027
    Abstract: The invention relates to the use of an apparatus for adding at least one solid or viscous liquid additive, or an additive dispersed in solvent, to a reactor interior of a reactor for preparing crosslinked, finely divided polymers by copolymerizing (a) water-soluble, monoethylenically unsaturated monomers and (b) from 0.001 to 5 mol %, based on the monomers (a), of monomers comprising at least two polymerizable groups, (c) from 0 to 20 mol %, based on the monomers (a), of water-insoluble monoethylenically unsaturated monomers, where the apparatus comprises at least one screw for conveying the at least one additive and the at least one screw ends in an addition orifice substantially flush with the inner wall of the reactor interior.
    Type: Grant
    Filed: July 3, 2006
    Date of Patent: June 26, 2012
    Assignee: BASF Aktiengesellschaft
    Inventors: Annemarie Hillebrecht, Uwe Stüven, Leo Van Miert, Dominicus van Esbroeck, Bernd Brian, Siegfried Chszaniecki
  • Patent number: 8206906
    Abstract: The invention relates to methods and compositions for analyzing plant acetohydroxy acid synthase large subunit (AHASL) genes. In particular, the invention relates to methods for the detection of wild-type AHASL alleles and mutant AHASL alleles that encode imidazolinone-tolerant AHASL proteins. The methods involve the use of PCR amplification and novel compositions comprising allele-specific and gene-specific primers to detect the presence of mutant and/or wild-type alleles present at the individual AHASL genes of a plant. Specifically, the methods and compositions are useful for analyzing the three AHASL genes of Triticum aestivum and the two AHASL genes of Triticum turgidum ssp. durum.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: June 26, 2012
    Assignee: BASF SE
    Inventors: Chengyan Zhao, Robert Ascenzi, Bijay K. Singh
  • Patent number: 8206464
    Abstract: Disclosed are cationic polymeric dye with a hue value of h=210° to 330° comprising: a) a polymer backbone, b) a residue of an organic dye, and c) optionally colorless organic groups, wherein (b) and (c) are covalently bound to the polymer backbone (a), and wherein the cationic charges can independently be part of the dye or the colorless organic groups. The dyes are distinguished by their depth of shade and their good fastness properties to washing, such as, for example, fastness to light, shampooing and rubbing.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: June 26, 2012
    Assignee: BASF SE
    Inventors: Christian Cremer, Sophie Marquais-Bienewald, Olof Wallquist, Beate Fröhling
  • Patent number: 8206626
    Abstract: Process for the production of moldings from nanoporous polymer materials, comprising the stages of a) preparation of a multiphase polymer mixture with domains in the range from 5 to 200 nm, b) impregnation of the polymer mixture with a blowing agent, where the solubility of the blowing agent in the phase forming the domains is at least twice as high as in the adjacent phases, c) expansion of the multiphase polymer mixture comprising blowing agent, by introducing the polymer mixture into a cavity and expanding it therein, thus obtaining the molding.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: June 26, 2012
    Assignee: BASF SE
    Inventors: Andre Guerin Moreira, Marc Bothe, Volker Schädler, Markus Allmendinger, Pedro Manuel Sampaio Lopes, Bernd Sowart, Timothy Francis, Erik Waβner, Christian Schade, Daniela Longo, Siljana Lietz, Volker Alstädt, Jan Sandler
  • Patent number: 8205765
    Abstract: The invention relates to a fuel reservoir for gaseous fuel in a vehicle, in particular a sorption reservoir. The fuel reservoir is delimited by at least one wall and includes a sorption material that is contained in its interior. The fuel reservoir has a tank inlet valve containing a shut-off valve and a throttle restriction valve. The restriction of the gaseous fuel takes place inside the fuel reservoir.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: June 26, 2012
    Assignees: Robert Bosch GmbH, BASF Aktiengesellschaft
    Inventors: Werner Gruenwald, Thorsten Allgeier, Kai Oertel, Ian Faye, Stephan Leuthner, Jan-Michael Graehn, Markus Schubert
  • Patent number: 8207083
    Abstract: The present invention relates to a catalyst nickel, silica, alumina and magnesium, wherein the nickel to magnesium atomic ratio is 5-75. In particular the present invention relates to a catalyst comprising nickel, silica, alumina and magnesium, wherein the nickel to silicium atomic ratio (Ni/Si) is 2 to 30 to nickel to aluminum atomic ratio (Ni/Al) is 9 to 40 and the nickel to magnesium atomic ratio (Ni/Mg) is 5-75. The invention further relates to a method for preparing such a catalyst. The invention further relates to a process for hydrogenating unsaturated organic compounds.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: June 26, 2012
    Assignee: BASF Corporation
    Inventors: Pieter Hildegardus Berben, Tjalling Rekker
  • Publication number: 20120157711
    Abstract: The present invention relates to a process for preparing formic acid by reacting carbon dioxide (1) with hydrogen (2) in a hydrogenation reactor (I) in the presence of a catalyst comprising an element of group 8, 9 or 10 of the Periodic Table, a tertiary amine comprising at least 12 carbon atoms per molecule and a polar solvent comprising one or more monoalcohols selected from among methanol, ethanol, propanols and butanols, to form formic acid/amine adducts as intermediates which are subsequently thermally dissociated, where a tertiary amine having a boiling point which is at least 5° C. higher than that of formic acid is used and a reaction mixture comprising the polar solvent, the formic acid/amine adducts, the tertiary amine and the catalyst is formed in the reaction in the hydrogenation reactor (I) and is discharged from the reactor as output (3).
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Applicant: BASF SE
    Inventors: Thomas Schaub, Donata Maria Fries, Rocco Paciello, Klaus-Dieter Mohl, Martin Schäfer, Stefan Rittinger, Petra Deckert, Peter Bassler
  • Publication number: 20120153233
    Abstract: The thermoplastic molding composition comprises, based on the thermoplastic molding composition, a) at least one polyamide, copolyamide or a polyamide-comprising polymer blend as component A, b) from 0.1 to 10% by weight of carbon nanotubes, graphenes or mixtures thereof as component B, c) from 0.1 to 3% by weight of ionic liquids as component C, wherein the thermoplastic molding composition does not comprise any polyamide-12 units.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 21, 2012
    Applicant: BASF SE
    Inventors: Cecile Gibon, Xin Yang, Christof Kujat, Martin Weber, Laszlo Szarvas, Daniel Klein, Petra Poetschke, Beate Krause
  • Publication number: 20120157679
    Abstract: Process for preparing a cyclic tertiary methylamine of the formula I where A is a C4-alkylene group, a C5-alkylene group or a —(CH2)2—B—(CH2)2—group, where B is oxygen (O) or an N—R1 radical and R1 is C1-C5-alkyl, aryl or C5-C7-cycloalkyl, wherein an amino alcohol II from the group consisting of 1,4-aminobutanol, 1,5-aminopentanol, aminodiglycol (ADG) or aminoethylethanolamine of the formula IIa where R1 is as defined above or is hydrogen (H), in which case R1?CH3 in the amine I, is reacted with methanol in a reactor at a temperature in the range from 150 to 270° C. in the liquid phase in the presence of a copper-comprising heterogeneous catalyst.
    Type: Application
    Filed: June 13, 2011
    Publication date: June 21, 2012
    Applicant: BASF SE
    Inventors: CHRISTOF WILHELM WIGBERS, Johann-Peter Melder, Bernd Stein, Harald Meißner
  • Publication number: 20120157737
    Abstract: A reactor includes an essentially horizontal cylinder for carrying out an autothermal gas-phase dehydrogenation of a hydrocarbon-comprising gas stream using an oxygen-comprising gas stream to give a reaction gas mixture over a heterogeneous catalyst configured as monolith. The interior of the reactor is divided by a detachable, cylindrical or prismatic housing, which is arranged in the longitudinal direction of the reactor and is gastight in the circumferential direction, into an inner region having one or more catalytically active zones, each having a packing composed of monoliths stacked on top of one another, next to one another and behind one another and before each catalytically active zone in each case a mixing zone having solid internals are provided and into an outer region, which is supplied with an inert gas, arranged coaxially to the inner region. A heat exchanger is connected to the housing at one end of the reactor.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Applicant: BASF SE
    Inventors: Gerhard Olbert, Ulrike Wegerle, Grigorios Kolios, Albena Kostova, Jasmina Kessel, Alexander Weck, Alireza Rezai
  • Publication number: 20120157719
    Abstract: The invention relates to a tube bundle reactor with a flat feed hood. Alternatively, the release hood may also have a flat design. The flat design reduces the heat of reaction which arises in the hood in the case of reaction types which take place not only in the tube bundle (uncatalyzed reactions and reactions with homogeneously distributed catalyst). This greatly suppresses undesired reactions which already take place in the hood owing to accumulated heat, which achieves a higher selectivity in the case of thermally sensitive reactions. In addition, the thermal distribution within the hoods can be controlled precisely. The tube bundle reactor comprises a tube bundle which has a feed end which is connected to a feed hood of the tube bundle reactor, wherein the feed hood is configured in a flat design with a cross-sectional area at the feed end and an internal volume, and the ratio of internal volume to cross-sectional area is less than 0.35 m.
    Type: Application
    Filed: January 19, 2010
    Publication date: June 21, 2012
    Applicant: BASF SE
    Inventors: Joaquim Henrique Teles, Peter Resch, Wilhelm Ruppel, Ulrike Wegerle, Wolfgang Gerliing, Beatrice Rössler-Feigel, Anton Meier, Christian Müller
  • Publication number: 20120157722
    Abstract: The present invention relates to a process for continuously preparing a mononitrated organic compound, especially a process for preparing mononitrobenzene. The invention relates more particularly to an improved continuous adiabatic process for preparing nitrobenzene.
    Type: Application
    Filed: August 20, 2010
    Publication date: June 21, 2012
    Applicant: BASF SE
    Inventors: Leo Denissen, Eckhard Stroefer, Jan-Dirk Arndt, Torsten Mattke, Kerstin Heinen, Julia Leschinski
  • Publication number: 20120157715
    Abstract: A process for preparing an N,N-dialkylethanolamine of the formula I having high color stability where R1 and R2 are each independently a C1- to C8-alkyl group, by reacting ethylene oxide (EO) with a corresponding dialkylamine (R1R2NH) in the presence of water, wherein the reaction is effected continuously in a reactor, the reaction temperature is in the range from 90 to 180° C. and the residence time (RT) in the reactor is in the range from 1 to 7 min, the reactor output is treated thermally at a temperature in the range from 80 to 160° C. over a period in the range from 20 to 1000 min, and then the N,N-dialkylethanolamine is removed by distillation.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 21, 2012
    Applicant: BASF SE
    Inventors: Frank-Friedrich Pape, Johann-Peter Melder, Alfred Krause, Roland Bou Chedid, Martin Rudloff