Patents Assigned to BioSensor, Inc.
  • Patent number: 9915608
    Abstract: A method and apparatus for non-invasively determining a concentration of glucose in a subject using optical excitation and detection is provided. The method includes emitting an exciter beam (B1) to irradiate a portion (130) of tissue of the subject, causing physical and chemical changes in the surface, and causing an initial back scattering (D1) of light. The method further includes periodically emitting a probe beam (B2) which irradiates the portion of tissue and causes periodic back scatterings (D2) of light. The initial and periodic back scatterings are detected and converted into electrical signals of at least the amplitude, frequency or decay time of the physical and chemical changes, the back scatterings being modulated by the physical and chemical changes. By differentiating over time at least one of the amplitude, frequency or decay time of the physical and chemical changes, the concentration of glucose may be determined.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: March 13, 2018
    Assignee: BioSensor, Inc.
    Inventors: Peter Schultz, Arkady Amosov, Natalia Izvarina, Sergey Kravetz
  • Publication number: 20180055402
    Abstract: Systems, methods and computer-readable media are disclosed for providing therapeutic auditory stimulation. Consistent with disclosed embodiments, a system for providing therapeutic auditory stimulation may comprise a diagnostic unit that computes an EEG spectral density of a patient and a heart rate spectral density of a patient and provides values for one or more EEG frequency bands and one or more heart rate frequency bands. The system may also comprise a therapy unit that generates, based on the provided values, one or more stimulation waveforms corresponding to one or more of the EEG frequency bands and provides the stimulation waveforms for therapeutic auditory stimulation. The stimulation waveforms may comprise audible carrier frequencies modulated by signals with frequencies that vary exponentially with time. The EEG frequency bands may comprise the delta, theta, alpha, beta 1, beta 2, and gamma EEG frequency hands.
    Type: Application
    Filed: February 11, 2016
    Publication date: March 1, 2018
    Applicant: Biosensor, Inc.
    Inventor: Natalia IZVARINA
  • Patent number: 9857365
    Abstract: Described are immunoassay kits having a conjugate structure separate from an immunochromatographic strip in which the conjugate structure is freeze-dried with uniform droplet size, and related compositions and methods. The unique structure of the kits described here permits sample containing analyte to be reacted uniformly with the conjugate structure before being subjected to immunochromatography by application to the strip. This results in improved performance of the assay. In addition, the freeze-dried conjugate structure can be stored without contamination and is easy to carry. In addition, the freeze-dried conjugate structure can be rapidly and uniformly dissolved so that it is immediately allowed to react with a mixture of a buffer and a sample, the reaction product then being analyzed by immunochromatography, making it suitable for use in point-of-care testing.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: January 2, 2018
    Assignee: SD Biosensor, Inc.
    Inventors: Hyoung Gil Choi, Sung Yub Hong, Hee Young Hwang, Hyo Keun Lee
  • Patent number: 9442110
    Abstract: A system and method are provided to detect target analytes based on magnetic resonance measurements. Magnetic structures produce distinct magnetic field regions having a size comparable to the analyte. When the analyte is bound in those regions, magnetic resonance signals from the sample are changed, leading to detection of the analyte.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: September 13, 2016
    Assignee: MENON BIOSENSORS, INC.
    Inventors: Suresh M. Menon, David E. Newman, Terry J. Henderson, J. Manuel Perez
  • Patent number: 9307935
    Abstract: Solutions for non-invasively monitoring blood metabolite levels of a patient are disclosed. In one embodiment, the method includes: repeatedly measuring a plurality of electromagnetic impedance readings with a sensor array from: an epidermis layer of a patient and one of a dermis layer or a subcutaneous layer of the patient, until a difference between the readings exceeds a threshold; calculating an impedance value representing the difference using an equivalent circuit model and individual adjustment factor data representative of a physiological characteristic of the patient; and determining a blood metabolite level of the patient from the impedance value and a blood metabolite level algorithm, the blood metabolite level algorithm including blood metabolite level data versus electromagnetic impedance data value correspondence of the patient.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: April 12, 2016
    Assignee: BioSensors, Inc.
    Inventors: Sarah E. Pluta, John W. Hewitt
  • Patent number: 9063189
    Abstract: A system and method are provided to detect target analytes based on magnetic resonance measurements. Magnetic structures produce distinct magnetic field regions having a size comparable to the analyte. When the analyte is bound in those regions, magnetic resonance signals from the sample are changed, leading to detection of the analyte.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: June 23, 2015
    Assignee: Menon Biosensors, Inc.
    Inventors: Suresh M. Menon, David E. Newman, Steven C. Chan
  • Patent number: 8735554
    Abstract: The present invention provides PBP2a peptide antigens for generating antibodies against MRSA, and provides high-affinity binding agents that detect MRSA by selective immunoreactivity with PBP2a. The antibodies are useful in methods and systems for detecting MRSA, including biosensor systems, or as components of diagnostic or detection kits. The antibodies, in some embodiments, have therapeutic value against MRSA infection.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: May 27, 2014
    Assignee: Innovative Biosensors, Inc.
    Inventors: Colette Cote, Qiao-xi Zheng, Venkatakrishna Shyamala, Tom Hazel
  • Patent number: 8617485
    Abstract: A sensor strip apparatus includes: a top plate having an entrance opening downward and a joint formed downward; a pad section including a support having a window opening downward, a reaction pad attached to the window of the support and reacting with a specimen, first and second hemolysis inhibition pads attached to the reaction pad to filter hemocytes from the specimen, a specimen pad attached to the first and second hemolysis inhibition pads to diffuse the specimen crosswise, and an adhesive film attached to the support around the first and second hemolysis inhibition pads to increase adhesion strength of the specimen pad; and a bottom plate having a second joint forcibly coupled with to the joint of the top plate, and a window configured to indentify the reaction pad through the window of the support.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: December 31, 2013
    Assignee: SD Biosensor, Inc.
    Inventors: Hyo Geun Lee, Hyo Lim Park, Eun Sun Song, Byung Hak Song
  • Publication number: 20120329145
    Abstract: A sensor strip apparatus includes: a top plate having an entrance opening downward and a joint formed downward; a pad section including a support having a window opening downward, a reaction pad attached to the window of the support and reacting with a specimen, first and second hemolysis inhibition pads attached to the reaction pad to filter hemocytes from the specimen, a specimen pad attached to the first and second hemolysis inhibition pads to diffuse the specimen crosswise, and an adhesive film attached to the support around the first and second hemolysis inhibition pads to increase adhesion strength of the specimen pad; and a bottom plate having a second joint forcibly coupled with to the joint of the top plate, and a window configured to indentify the reaction pad through the window of the support.
    Type: Application
    Filed: March 14, 2011
    Publication date: December 27, 2012
    Applicant: SD BIOSENSOR, INC.
    Inventors: Hyo Geun Lee, Hyo Lim Park, Eun Sun Song, Byung Hak Song
  • Publication number: 20110250202
    Abstract: The present invention provides PBP2a peptide antigens for generating antibodies against MRSA, and provides high-affinity binding agents that detect MRSA by selective immunoreactivity with PBP2a. The antibodies are useful in methods and systems for detecting MRSA, including biosensor systems, or as components of diagnostic or detection kits. The antibodies, in some embodiments, have therapeutic value against MRSA infection.
    Type: Application
    Filed: May 7, 2009
    Publication date: October 13, 2011
    Applicant: Innovative Biosensors, Inc.
    Inventors: Colette Cote, Qiao-Xi Zheng, Venkatakrishna Shyamala, Tom Hazel
  • Publication number: 20110111487
    Abstract: The present invention relates to a method and apparatus for detecting analytes in a medium, and more particularly the present invention relates to an assay based on light diffraction which appears or changes upon the binding of analytes to their specific receptors laid out in patterns on a substrate, which has high sensitivity due to the appropriate choice of such patterns. The present invention is based on the principle that the pattern of recognition elements, which gives rise to the diffraction of the incident light in a diffraction-based assay, can be chosen in such a way so as to facilitate detection, and to enhance the signal to be detected compared to known gratings such as parallel straight lines. In one aspect the substrate itself has a surface topography designed to enhance the diffraction pattern signals. In another aspect the substrate is a diffractive optic element having the analyte-specific receptors affixed to the optic element.
    Type: Application
    Filed: October 28, 2010
    Publication date: May 12, 2011
    Applicant: AXELA BIOSENSORS INC.
    Inventors: M. Cynthia GOH, Richard LOO, Jane B. GOH, Richard MCALONEY
  • Patent number: 7314749
    Abstract: The present invention relates to a method and apparatus for detecting analytes in a medium, and more particularly the present invention relates to an assay based on light diffraction which appears or changes upon the binding of analytes to their specific receptors laid out in patterns on a substrate, which has high sensitivity due to the appropriate choice of such patterns. The present invention is based on the principle that the pattern of recognition elements, which gives rise to the diffraction of the incident light in a diffraction-based assay, can be chosen in such a way so as to facilitate detection, and to enhance the signal to be detected compared to known gratings such as parallel straight lines. In one aspect the substrate itself has a surface topography designed to enhance the diffraction pattern signals. In another aspect the substrate is a diffractive optic element having the analyte-specific receptors affixed to the optic element.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: January 1, 2008
    Assignee: Axela Biosensors Inc.
    Inventors: M. Cynthia Goh, Richard Loo, Jane B. Goh, Richard McAloney
  • Patent number: 7008794
    Abstract: A method and apparatus for assay of multiple analytes. The method uses a sensing element comprising a substrate upon which is arranged a multiplicity of recognition elements, such that each element is laid out in a predetermined pattern. Each pattern is unique in that it can give rise to a characteristic diffraction pattern in the assay. The patterns may or may not be interpenetrating on the substrate surface. The method of detecting multiple analytes includes contacting the medium of analytes with the patterned substrate, illuminating the substrate by a light source, and detecting any resultant diffraction image. The pattern of diffraction and the intensity of the diffracted signal provides information about the existence of specific analytes and their quantification.
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: March 7, 2006
    Assignee: Axela Biosensors Inc.
    Inventors: M. Cynthia Goh, Jane B. Goh, Richard McAloney, Richard Loo
  • Patent number: 6981445
    Abstract: An apparatus for producing patterns on a surface of a substrate. The apparatus includes a rigid support such as a rigid tubular structure having first and second opposed ends and a fluid flow passageway extending therethrough. A printing stamp is attached at one of the opposed ends of the rigid support. The printing stamp has a flexible diaphragm portion which has an outer surface which is coated with one or more materials in a pre-selected pattern. A pneumatic pressurizing mechanism communicating with an inner surface of the flexible diaphragm portion through the fluid flow passageway is used to bias the flexible diaphragm portion outwardly into intimate and uniform contact with the surface of the substrate for transferring the pre-selected pattern onto the substrate surface. The rigid tubular supports are attached to a robotic positioning mechanism for providing control of positioning of the stamp relative to the substrate surface.
    Type: Grant
    Filed: December 24, 2003
    Date of Patent: January 3, 2006
    Assignee: Axela Biosensors Inc.
    Inventors: Raymond Francis Cracauer, Rocky Ganske, M. Cynthia Goh, Jane B. Goh, Adam Brian Liederman, Richard Loo, Pui Tam
  • Patent number: 6097975
    Abstract: An apparatus and method for noninvasively measuring blood glucose concentration. The apparatus disclosed uses light pulses directed onto a patient's skin and reflected back from the patient to measure blood glucose. Reflected light is passed through light filters that transmit a narrow bandwidth of light within a range of wavelengths that is absorbed by glucose and then measured. Unreflected light is passed through identical light filters and also measured. The two measurements are then compared and used to calculate the patient's blood glucose concentration.
    Type: Grant
    Filed: May 13, 1998
    Date of Patent: August 1, 2000
    Assignee: BioSensor, Inc.
    Inventors: Gury Timofeevich Petrovsky, Michail Davidovich Slavin, Lubov Aleksandrovna Slavina, Natalia Leonidovna Izvarina, Miroslav Orestes Pankevich