Patents Assigned to Board of Trustees of the University
  • Patent number: 11664093
    Abstract: Catalyst design in asymmetric reaction development has traditionally been driven by empiricism, wherein experimentalists attempt to qualitatively recognize structural patterns to improve selectivity. Machine learning algorithms and chemoinformatics can potentially accelerate this process by recognizing otherwise inscrutable patterns in large datasets. Herein we report a computationally guided workflow for chiral catalyst selection using chemoinformatics at every stage of development. Robust molecular descriptors that are agnostic to the catalyst scaffold allow for selection of a universal training set on the basis of steric and electronic properties. This set can be used to train machine learning methods to make highly accurate predictive models over a broad range of selectivity space. Using support vector machines and deep feed-forward neural networks, we demonstrate accurate predictive modeling in the chiral phosphoric acid-catalyzed thiol addition to N-acylimines.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: May 30, 2023
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Scott E. Denmark, Andrew F. Zahrt, Jeremy J. Henle, Brennan T. Rose, Yang Wang, William T. Darrow
  • Publication number: 20230158019
    Abstract: The discovery of mutant or fusion kinases that drive oncogenesis, and the subsequent approval of specific inhibitors for these enzymes, has been instrumental in the management of some cancers. However, acquired resistance remains a significant problem in the clinic, limiting the long-term effectiveness of most of these drugs. Herein is demonstrated a strategy to overcome this resistance through drug-induced MEK cleavage (via direct procaspase-3 activation) combined with targeted kinase inhibition. This combination effect is shown to be general across diverse tumor histologies (melanoma, lung cancer, and leukemia) and driver mutations (mutant BRAF or EGFR, fusion kinases EML4-ALK and BCR-ABL). Caspase-3-mediated degradation of MEK kinases results in sustained pathway inhibition and substantially delayed or eliminated resistance in cancer cells in a manner superior to combinations with MEK inhibitors.
    Type: Application
    Filed: November 28, 2022
    Publication date: May 25, 2023
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: Paul J. HERGENROTHER, Jessie PEH, Matthew BOUDREAU
  • Patent number: 11653608
    Abstract: A rice cultivar designated UADA1701081 is disclosed herein. The present invention provides seeds, plants, and plant parts derived from rice cultivar UADA1701081. Further, it provides methods for producing a rice plant by crossing UADA1701081 with itself or another rice variety. The invention also encompasses any rice seeds, plants, and plant parts produced by the methods disclosed herein, including those in which additional traits have been transferred into UADA1701081 through the introduction of a transgene or by breeding UADA1701081 with another rice cultivar.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: May 23, 2023
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS
    Inventor: Karen A. K. Moldenhauer
  • Patent number: 11654429
    Abstract: A sample carrier may include a sample preparation module and an amplification module. A sample mixes with a lysis medium and a nucleic acid amplification medium in the sample preparation module and then flows into a plurality of microfluidic chambers in the amplification module. The microfluidic chambers have disposed therein primers configured to initiate amplification of one or more target nucleic acid sequences corresponding to one or more pathogens. The sample carrier is inserted into an apparatus that includes a plurality of Sight sources and a camera. The light sources illuminate the microfluidic chambers with excitation light, a fluorophore emits fluorescence light indicative of nucleic acid amplification in response to the excitation-light, and the camera captures images of the microfluidic chambers. A target nucleic acid sequence in the sample is indicated by the images showing an increasing fluorescence in a microfluidic chamber that has the primers for that sequence.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: May 23, 2023
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Brian T. Cunningham, Rashid Bashir, Anurup Ganguli, Akid Ornob, Gregory Damhorst, Hojeong Yu, Weili Chen, Fu Sun
  • Patent number: 11655506
    Abstract: A method for monitoring a treatment of a subject having a musculoskeletal disorder is provided. The method includes measuring a first expression level of at least two biomarkers at a treatment site prior to the treatment and measuring a second expression level of the at least two biomarkers at the treatment site after the treatment begins. The method further includes comparing the first expression level of the at least two biomarkers prior to the treatment to the second expression level of the at least two biomarkers post treatment and continuing the treatment, altering the treatment or stopping the treatment based on the comparison. A method of treating a musculoskeletal disorder in a subject is also provided. The method includes removing a aggrecan-hyaluronan matrix from a treatment site in the subject.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: May 23, 2023
    Assignees: Rush University Medical Center, The Board of Trustees of the University of Illinois
    Inventors: Anna Plaas, Vincent Wang, John Sandy, Rebecca Bell, Jorge Galante, Katie J. Trella
  • Patent number: 11655552
    Abstract: In an aspect, a method of making a composite core-shell nanoparticle comprises forming a nanoparticle core comprising nickel oxide or iron oxide via thermal decomposition of a nickel complex or an iron complex; and forming an oxide shell over the core, the oxide shell comprising nickel, iron or a mixture thereof. In another aspect, a method of making composite nanoparticles comprises providing a mixture comprising nickel complex and iron complex; and thermally decomposing the nickel and iron complexes to provide the composite nanoparticles comprising (Ni,Fe)Ox alloy. In yet another aspect, a composition comprises composite nanoparticles, the composite nanoparticles including a nickel oxide core and oxide shell, the oxide shell comprising a mixture of nickel and iron.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: May 23, 2023
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS
    Inventors: Jingyi Chen, Lauren F Greenlee, Ryan Manso, Prashant Acharya, Cameron C Crane
  • Publication number: 20230155136
    Abstract: Aspects of the subject disclosure may include, for example, a porous device, comprising a porous material, and a hierarchical network of flow channels defined in the porous material, wherein at least one flow channel in the hierarchical network of flow channels has a shape that at least partially approximates a cube-root profile or a quartic-root profile. Additional embodiments are disclosed.
    Type: Application
    Filed: November 3, 2022
    Publication date: May 18, 2023
    Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventor: Kyle Christopher Smith
  • Patent number: 11647715
    Abstract: A rice cultivar designated ‘Lynx’ is disclosed herein. The present invention provides seeds, plants, and plant parts derived from rice cultivar Lynx. Further, it provides methods for producing a rice plant by crossing Lynx with itself or another rice variety. The invention also encompasses any rice seeds, plants, and plant parts produced by the methods disclosed herein, including those in which additional traits have been transferred into Lynx through the introduction of a transgene or by breeding Lynx with another rice cultivar.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: May 16, 2023
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS
    Inventor: Xueyan Sha
  • Patent number: 11652179
    Abstract: Embodiments disclosed herein facilitates the monitoring of direct ultraviolet B (UVB) radiation exposure by a person via a system having a sensor (such as Lanthanum doped lead zirconate titanate (PLZT) thin-film sensors or other ferroelectric-based sensors) sensitive to UVB radiation. The system beneficially provides current real-time dosage information associated with Vitamin D production by the person as well as real-time indication of safe exposure and/or harmful exposure to current UVB radiation conditions while also, in some embodiments, takes into consideration a person's age, skin type and sensitivity, body surface area exposed.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: May 16, 2023
    Assignee: The Board of Trustees of The University of Alabama
    Inventors: Sushma Kotru, Vaishali Batra
  • Patent number: 11652187
    Abstract: The present disclosure describes one or more embodiment of a method for creating a patterned quantum dot layer. The method includes bringing a patterning stamp in contact with a layer of quantum dots disposed on a substrate, the patterning stamp comprising a patterned photoresist layer disposed on an elastomer layer, such that a portion of the quantum dots in contact with the patterned photoresist layer adheres to the patterning stamp, the portion of the quantum dots being adhered quantum dots. The method also includes peeling the patterning stamp from the substrate with a peeling speed larger than a pre-determined peeling speed to remove the adhered quantum dots from the substrate. A remaining portion of the quantum dots forms a patterned quantum dot layer on the substrate.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: May 16, 2023
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Seok Kim, Moonsub Shim, Jun Kyu Park, Hohyun Keum, Yiran Jiang
  • Patent number: 11651082
    Abstract: Technology related to blockchain cybersecurity solutions and a blockchain applicability framework is disclosed. In one example of the disclosed technology, a system is configured to receive parameters for a blockchain candidate application and evaluate the parameters to determine a recommendation for types of blockchain to apply to the candidate application. The recommendation may be based on an evaluation of the parameters to determine a level of applicability of blockchain usage, a level of applicability of one or more blockchain privacy types, and a level of applicability of one or more blockchain consensus types. The system may be configured to calculate an overall percentage distribution of the levels of applicability and to output an indication of the overall percentage distribution.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: May 16, 2023
    Assignees: Battelle Memorial Institute, The Board of Trustees of the University of Arkansas
    Inventors: Sri Nikhil Gupta Gourisetti, Michael E. Mylrea, Hirak Patangia
  • Patent number: 11648553
    Abstract: A material for manipulating liquid includes a porous substrate having first and second surfaces; and a wedge-shaped transport element disposed on one of the first and second surfaces, wherein the wedge-shaped transport element has a narrow end and a wide end, the wide end connected to a first reservoir, wherein the wedge-shaped transport element is configured to pass liquid from the narrow end to the wide end to the first reservoir, regardless of gravity, and wherein the first reservoir is configured to pass liquid away from the substrate in a z-direction opposite from the surface on which a liquid is deposited. The surface on which the wedge-shaped transport element is disposed is one of hydrophobic or superhydrophobic, and the wedge-shaped transport element is one of a) superhydrophilic when the first surface is hydrophobic, b) superhydrophilic when the first surface is superhydrophobic, and c) hydrophilic when the first surface is superhydrophobic.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: May 16, 2023
    Assignees: KIMBERLY-CLARK WORLDWIDE, INC., The Board of Trustees of the University of Illinois
    Inventors: Constantine Megaridis, Souvick Chatterjee, Ali Ibrahim, Pallab Sinha Mahapatra, Ranjan Ganguly, Lisha Yu, Richard N. Dodge
  • Patent number: 11647714
    Abstract: A rice cultivar designated UADA1701084 is disclosed herein. The present invention provides seeds, plants, and plant parts derived from rice cultivar UADA1701084. Further, it provides methods for producing a rice plant by crossing UADA1701084 with itself or another rice variety. The invention also encompasses any rice seeds, plants, and plant parts produced by the methods disclosed herein, including those in which additional traits have been transferred into UADA1701084 through the introduction of a transgene or by breeding UADA1701084 with another rice cultivar.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: May 16, 2023
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS
    Inventor: Karen A. K. Moldenhauer
  • Publication number: 20230142846
    Abstract: Aspects of the subject disclosure may include, for example, a porous electrode that includes a porous layer, and a pattern of flow channels defined in the porous layer, wherein a first flow channel in the pattern of flow channels has a shape that at least partially approximates a cube-root profile. Additional embodiments are disclosed.
    Type: Application
    Filed: November 3, 2022
    Publication date: May 11, 2023
    Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Kyle Christopher Smith, Erik Richard Reale, Irwin Cunnie Loud, IV, Vu Quoc Do
  • Patent number: 11638904
    Abstract: A method of encapsulating an engineered pellet in a porous membrane is disclosed. The method includes the steps of: (i) dissolving a membrane solute in a membrane solvent to produce a membrane solution; (ii) applying the membrane solution to a pellet to form a pellet encapsulated with the membrane solution; (iii) subjecting the membrane solution that encapsulates the pellet to a phase inversion and; (iv) drying the pellet to form a porous membrane encapsulated pellet. A porous membrane encapsulated pellet is also described.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: May 2, 2023
    Assignees: The University of South Alabama, The Board of Trustees of The University of Alabama
    Inventors: Thomas Grant Glover, Stephen Michael Christopher Ritchie
  • Patent number: 11639528
    Abstract: The present disclosure involves a process to identify a patient likely to have OSCC by taking a sample containing miRNA from epithelial cells from the patient's oral cavity and determining the relative level of expression of miRNA sequences which have different levels of expression in epithelial cell OSCC tissue than in benign tissue. The epithelial cells are those that form the mucosal epithelium that consists mainly of keratinocytes with some immune cells. It involves determining the relative level of expression of at least miRNA sequences hsa-miR-130-3p, hsa-miR-7-5p, hsa-miR-101-3p and hsa-miR-146b-5p. It also involves discriminating between benign oral lesions and OSCC using a sample of epithelial cells of the lesion and determining the relative level of expression of miRNA sequences which have different levels of expression in epithelial cell OSCC tissue than in benign tissue. It uses the relative level of expression of at least miRNA sequences hsa-miR-196a-5p and hsa-miR-873-5p.
    Type: Grant
    Filed: November 5, 2016
    Date of Patent: May 2, 2023
    Assignees: BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS, Arphion LTD
    Inventors: Guy Adami, Yalu Zhou, Joel Schwartz, Antonia Kolokythas
  • Patent number: 11637374
    Abstract: In an aspect, the disclosed technology relates to embodiments of a lossy ferrite-core and dielectric-shell (LFC-DS) structure in an axial-mode helical antenna (AM-HA) or a meandered dipole antennas. The instant topology can be used to facilitates the broader use of ferrite materials, including lossy ferrite material, for a miniature AM-HA or meandered dipole antennas, e.g., by overcoming the lossy characteristics of the lossy ferrite. The resulting miniature AM-HA can be used for high frequency operation, including at over 1 GHz, making the instant topology suitable for very high frequency (VHF) and ultra-high Frequency (UHF) applications.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: April 25, 2023
    Assignee: The Board of Trustees of The University of Alabama
    Inventors: Yang-Ki Hong, Woncheol Lee, Hoyun Won
  • Publication number: 20230124695
    Abstract: A transistor using patterned metamaterial electrode manipulating electromagnetic waves to achieve matched phase velocity on the input and output ports. A design method is taught wherein the layout of the electrodes can be designed to compensate for the phase-velocity mismatch induced by the transistor's intrinsic properties.
    Type: Application
    Filed: March 9, 2021
    Publication date: April 20, 2023
    Applicant: BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS
    Inventors: Amirreza Ghadimi Avval, Samir El-Ghazaly
  • Publication number: 20230119684
    Abstract: Provided herein are compositions and methods for mechanochemical dynamic therapy.
    Type: Application
    Filed: October 14, 2022
    Publication date: April 20, 2023
    Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: King C. LI, Gun KIM, Qiong WU, Jeffrey S. MOORE, Yun-Sheng CHEN
  • Publication number: 20230120878
    Abstract: The present invention provides a swarm manufacturing platform, based on a swarm 3D printing and assembly (SPA) platform as a model for future smart factories, consisting of thousands of IoT-based mobile robots performing different manufacturing operations with different end effectors (e.g., material deposition, energy deposition, pick and place, removal of materials, screw driving, etc.) and real-time monitoring. The swarm manufacturing platform transforms a 1-D factory into a 2-D factory with manufacturing robots that can move across the 2-D factory floor, work cooperatively with each other on the same production jobs, and re-configure in real-time (i.e., the manufacturing robots can be digitally controlled to move, re-group, calibrate, and work on a new job in real-time).
    Type: Application
    Filed: February 11, 2021
    Publication date: April 20, 2023
    Applicant: BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS
    Inventors: Wenchao Zhou, Marques Lucas, Zachary Hyden, Pablo Guerra