Abstract: A single chip radio transceiver includes circuitry that enables detection of radar signals to enable the radio transceiver to halt communications in overlapping communication bands to avoid interference with the radar transmitting the radar pulses. The radio transceiver is operable to evaluate a number of most and second most common pulse interval values to determine whether a traditional radar signal is present. The radio transceiver also is operable to FM demodulate an incoming signal to determine whether a non-traditional radar signal, such as a bin-5 radar signal, is present. After FM demodulation, the signal is averaged wherein a substantially large value is produced for non-traditional radar signals and a value approximately equal to zero is produced for a communication signal that is not FM modulated with a continuously increasing frequency signal. Gain control is used to limit incoming signal magnitude to a specified range of magnitudes.
Abstract: Aspects of a method and system for an RF front-end calibration scheme using signals from a fractional-N frequency synthesized and received signal strength indicator (RSSI) are provided. A frequency synthesizer within a wireless receiver may generate a signal for dynamically modifying a gain in an integrated low-noise amplifier (LNA) for each selected receiver channel. The frequency-synthesized signals may be applied to at least one tunable load communicatively coupled to the LNA. The tunable load may be an input load or an output load. The signal generated by the frequency synthesizer may be sequentially applied to the input load and the output load. A logarithmic amplifier may generate an RSSI signal from the LNA output during the calibration process. The RSSI signal may be utilized for controlling a tunable load coupled to the LNA and optimize the tuning of the LNA in a desired channel by adjusting the tunable load.
Abstract: Aspects of a method and system for utilizing a 10/100/1G/10GBase-T PHY device for single channel and shared channel networks are provided. In this regard, at least one switching element may be utilized to configure an Ethernet over twisted pair PHY device for communication over a single and/or shared channel. The switching element may enable switching between a transmitter being coupled to a shared channel and a receiver being coupled to a shared channel. Additionally, the switching elements may be based on whether the transmitter is connected to a standard 10/100/1G/10GBase-T network, or to a single and/or shared channel network, for example. In this manner, the configured PHY device may remain compatible with existing Ethernet networks. The PHY device may be configured externally and/or internally. The polarity of transmitted and/or received data may be configured based on a polarity of data received from a shared channel.
Type:
Grant
Filed:
September 7, 2007
Date of Patent:
December 20, 2011
Assignee:
Broadcom Corporation
Inventors:
Scott Powell, Mark Berman, Joseph Laurence Cordaro, Manolito Catalasan
Abstract: The method and system for channel estimation in a single channel (SC) single-input multiple-output (SIMO) system described herein may provide a fast and cost effective approach to concurrently determine propagation channel estimates in a single-transmit (1-Tx) and multiple-receive (M-Rx) antennas wireless communication system. A single weight baseband generator may comprise a set generator, a channel estimator, and an algorithm generator. The set generator may generate orthogonal function sequences that may be applied to the M receive antennas and may be utilized by the channel estimator to generate channels estimates. The orthogonal function sequences may be transferred to the channel estimator after a delay. The algorithm generator may generate phase values based on the channels estimates that may be applied to the M receive antennas to improve the system's signal-to-noise performance.
Type:
Grant
Filed:
August 30, 2010
Date of Patent:
December 20, 2011
Assignee:
Broadcom Corporation
Inventors:
Mark Kent, Vinko Erceg, Uri M Landau, Pieter G. W. van Rooyen
Abstract: An integrated circuit (IC) includes an RF section, a DSP, and a plurality of processors. The RF section and the DSP process an inbound RF signal to produce inbound data and process outbound data to produce an outbound RF signal. In addition, the DSP converts an outbound analog audio signal into an outbound digital audio signal and converts an inbound digital audio signal into an inbound analog audio signal. A first processor converts the inbound data into the inbound digital audio signal and converts the outbound digital audio signal into the outbound data. A second processor performs a user application that includes at least one of generation of the inbound analog audio signal and generation of the outbound analog audio signal and performs an operating system algorithm to coordinate operation of the user application.
Type:
Application
Filed:
August 23, 2011
Publication date:
December 15, 2011
Applicant:
BROADCOM CORPORATION
Inventors:
AHMADREZA (REZA) ROFOUGARAN, MARYAM ROFOUGARAN, CLAUDE G. HAYEK, FREDERIC CHRISTIAN MARC HAYEM, VAFA JAMES RAKSHANI, HOOMAN DARABI
Abstract: An integrated communications system. Comprising a substrate having a receiver disposed on the substrate for converting a received signal to an IF signal. Coupled to a VGA for low voltage applications and coupled to the receiver for processing the IF signal. The VGA includes a bank pair having a first bank of differential pairs of transistors and a second bank of differential pairs of transistors. The bank pair is cross-coupled in parallel, the IF signal is applied to the bank pair decoupled from a control signal used to control transconductance output gain of the bank pair over a range of input voltages. A digital IF demodulator is disposed on the substrate and coupled to the VGA for low voltage applications, for converting the IF signal to a demodulated baseband signal. And a transmitter is disposed on the substrate operating in cooperation with the receiver to establish a two way communications path.
Type:
Application
Filed:
December 6, 2010
Publication date:
December 15, 2011
Applicant:
Broadcom Corporation
Inventors:
Klaas Bult, Rudy van de Plassche, Pieter Vorenkamp, Arnoldus Venes
Abstract: Legacy cyclic shift delay (CSD) for use within multiple user, multiple access, and/or MIMO wireless communications. Appropriately designed CSD is applied to communications in wireless communication systems thereby ensuring a minimized power error difference between respective portions of a packet transmitted therein. Such respective portions of the packet may be portions of the packet's preamble. For example, the first and second portions may be a legacy short training field (L-STF) and a very high throughput short training field (VHT-STF). By applying such appropriately designed CSD to a packet, a wireless communication device receiving a signal corresponding to that packet need not perform extra or very significant backoff (e.g., with respect to a signal subsequent to automatic gain control (AGC) processing) thereby simplifying signal processing and potentially also reducing a total number of effective analog to digital converter (ADC) bits needed to represent a digitally sampled version of that signal.
Abstract: A system for managing energy efficiency and control mechanisms in a network having a plurality of network components includes a global control policy manager (GCPM) having a global control policy (GCP) and coupled to at least one of the plurality of network components. The GCPM is configured to receive power information from the at least one of the plurality of network components, analyze the power information, generate a control policy modification based on the GCP and the received power information, and send the control policy modification to the at least one of the plurality of network components.
Abstract: A NFC enabled device to couple inductively to the H field of an RF signal and a regulator to regulate a voltage derived from an RF signal inductively coupled to the inductive coupler. The regulator has at least one voltage controlled impedance having a switch on voltage. A regulator controller provides a control voltage to each voltage controlled impedance such as that the control voltage is not less than the switch on voltage of the voltage controlled impedance.
Abstract: Cyclic shift delay (CSD) short training field (STF) for use within multiple user, multiple access, and/or MIMO wireless communications. Appropriately designed CSD STF is applied to communications in wireless communication systems thereby ensuring a minimized power error difference between respective portions of a packet transmitted therein. A first portion of the packet may be a short training field (STF) and a second portion of the packet may be a payload (e.g., a data portion). By applying such appropriately designed CSD STF to a packet, a wireless communication device that receives a signal corresponding to that packet need not perform extra or very significant backoff (e.g., with respect to a signal subsequent to automatic gain control (AGC) processing) thereby simplifying processing of that signal and potentially also reducing a total number of effective analog to digital converter (ADC) bits needed to represent a digitally sampled version of that signal.
Abstract: An apparatus is disclosed to increase a breakdown voltage of a semiconductor device. The semiconductor device includes an enhanced well region to effectively increase a voltage at which punch-through occurs when compared to a conventional semiconductor device. The enhanced well region includes a greater number of excess carriers when compared to a well region of the conventional semiconductor device. These larger number of excess carriers attract more carriers allowing more current to flow through a channel region of the semiconductor device before depleting the enhanced well region of the carriers. As a result, the semiconductor device may accommodate a greater voltage being applied to its drain region before the depletion region of the enhanced well region and a depletion region of a well region surrounding the drain region merge into a single depletion region.
Abstract: A system and method for enhanced physical layer device interface capability for backward support of fast retrain. The enhanced physical layer device is configurable in its leveraging of an identified legacy signaling mechanism. The identified legacy signaling mechanism can be used by the enhanced physical layer device to suspend transmission by the media access control device to facilitate the fast retrain.
Abstract: A method, apparatus, and system for using Bluetooth devices to secure sensitive data on other Bluetooth devices is described. A Bluetooth device is paired with a “trusted” Bluetooth device. When contact with the trusted device is lost, designated sensitive data on the secured Bluetooth device is automatically encrypted. When contact is restored, the data is automatically decrypted. In an alternate embodiment, a secured device can be associated with multiple trusted devices, and the secured device designate different sensitive data for each trusted device. In this way, multiple users can share a common, “public” Bluetooth device without concern that the other users will access their sensitive data on the device when the device is not being used by that user.
Abstract: According to one embodiment, a radio frequency (RF) transceiver includes a local oscillator generator (LOGEN) circuit configured to receive an adaptive supply voltage. The LOGEN circuit is coupled to a variable power supply for providing the adaptive supply voltage. A process monitor for the LOGEN circuit is in communication with the variable power supply through a power supply programming module. As a result, the adaptive supply voltage can be adjusted according to data supplied by the process monitor. A method for adaptively powering a LOGEN circuit comprises providing power to an RF device, monitoring a process corner of said LOGEN circuit, determining a supply voltage corresponding to the process corner, and adjusting the supply voltage to adaptively power the LOGEN circuit.
Abstract: A control device includes a first transceiver for communicating first control data with a first plurality of devices that utilize the millimeter wave frequency band in accordance with a first protocol, wherein the first transceiver utilizes the millimeter wave frequency band in accordance with the first protocol. A second transceiver communicates second control data with a second plurality of devices that utilize the millimeter wave frequency band in accordance with a second protocol, wherein the second transceiver utilizes the millimeter wave frequency band in accordance with the second protocol. A resource controller allocates resources of the millimeter wave frequency band to the first plurality of devices and the second plurality of devices based on the first control data and the second control data.
Type:
Application
Filed:
August 22, 2011
Publication date:
December 15, 2011
Applicant:
BROADCOM CORPORATION
Inventors:
Jeyhan Karaoguz, Jason A. Trachewsky, Vinko Erceg, Matthew J. Fischer, Christopher J. Hansen, Saishankar Nandagopalan, Murat Mese
Abstract: According to one embodiment, a radio frequency (RF) transceiver includes a transmitter enabling efficient preamplification gain control. The RF transceiver comprises a receiver and a power amplifier (PA) for amplifying a transmit signal of the transmitter. The transmitter is configured to provide pre-PA gain control for preamplifying the transmit signal before amplification by the PA, wherein substantially all of the pre-PA gain control is provided when the transmit signal is at a transmit frequency of the transmitter. In one embodiment, the transmitter includes a PA driver comprising in combination: a transconductance amplifier, a current steering block, and an output transformer. Each of the transconductance amplifier, current steering block, and output transformer is configured to contribute a respective variable gain control to the pre-PA gain control provided by the PA driver.
Type:
Application
Filed:
June 9, 2010
Publication date:
December 15, 2011
Applicant:
BROADCOM CORPORATION
Inventors:
Ahmad Mirzaei, Dmitriy Rozenblit, Hooman Darabi, Masoud Kahrizi
Abstract: A system for managing energy efficiency and control mechanisms in a network having a virtual machine includes a virtual machine power manager (VMPM) coupled to a virtual machine manager (VMM) and a network component. The VMPM is configured to receive power information from the network component, analyze the power information, generate configuration instructions based on the analyzing and send the configuration instructions to the VMM.
Abstract: Method and system encodes a signal according to a code rate that includes a ratio of uncoded bits to coded bits. An outer Reed-Solomon encoder encodes the signal into codewords. An interleaver converts the codewords into bits of frames for wireless transmission. An inner encoder executes a convolutional code to generate an encoded signal. The encoded signal is transmitted over a plurality of subcarriers associated with a wide bandwidth channel. The convolutional code is punctured and code states are added by the inner encoder to improve the code rate.
Type:
Application
Filed:
August 2, 2011
Publication date:
December 15, 2011
Applicant:
BROADCOM CORPORATION
Inventors:
Christopher J. Hansen, Jason Alexander Trachewsky, Rajendra T. Moorti
Abstract: A method for controlling operation of a multi-pair gigabit transceiver. The multi-pair gigabit transceiver comprises a Physical Layer Control module (PHY Control), a Physical Coding Sublayer module (PCS) and a Digital Signal Processing module (DSP). The PHY Control receives user-defined inputs from the Serial Management module and status signals from the DSP and the PCS and generates control signals, responsive to the user-defined inputs, the status signals, to the DSP and the PCS.
Abstract: A modified synchronized overlap add (SOLA) algorithm for performing high-quality, low-complexity audio time scale modification (TSM) is described. The algorithm produces good output audio quality with a very low complexity and without producing additional audible distortion during dynamic change of the audio playback speed. The algorithm may achieve complexity reduction by performing the maximization of normalized cross-correlation using decimated signals. By updating the input buffer and the output buffer in a precise sequence with careful checking of the appropriate array bounds, the algorithm may also achieve seamless audio playback during dynamic speed change with a minimal requirement on memory usage.