Patents Assigned to Broadcom
-
Publication number: 20110299633Abstract: A SAW-less receiver includes an FEM interface module, an RF to IF receiver section, and a receiver IF to baseband section. The RF to IF receiver section includes a frequency translated bandpass filter (FTBPF), an LNA, and a mixing section. The FTBPF includes a switching network and baseband impedances. The switching network is operable to frequency translate a baseband filter response to a first RF band frequency response and/or to a second RF frequency band response. The FTBPF filters the inbound RF signal to pass, substantially unattenuated, the first and/or second RF band signal components. The LNA amplifies the first and/or second filtered inbound RF signals and the mixing section mixes the first and/or second amplified inbound RF signals with a corresponding first and/or second local oscillation. The IF to baseband section converts the first and/or second inbound IF signals into first inbound symbol stream(s) and/or second inbound symbol stream(s).Type: ApplicationFiled: March 30, 2011Publication date: December 8, 2011Applicant: BROADCOM CORPORATIONInventors: Ahmad Mirzaei, Hooman Darabi
-
Publication number: 20110299436Abstract: A radio front end includes a power amplifier, a duplexer, a detection module, a processing module, and a tunable balancing network. The duplexer is operable to provide electrical isolation between the outbound wireless signal and an inbound wireless signal. The detection module is operable to detect non-linear function of the power amplifier to produce a detected non-linearity and to detect transmit leakage of the duplexer to produce detected transmit leakage. The processing module is operable to generate a coarse tuning signal based on the detected non-linearity and to generate a fine tuning signal based on the detected transmit leakage. The tunable balancing network is operably coupled to the duplexer and operable to establish an impedance based on the coarse and fine tuning signals.Type: ApplicationFiled: November 15, 2010Publication date: December 8, 2011Applicant: BROADCOM CORPORATIONInventors: Mohyee Mikhemar, Hooman Darabi
-
Publication number: 20110299634Abstract: A SAW-less receiver includes an FEM interface module, an RF to IF receiver section, and a receiver IF to baseband section. The RF to IF receiver section includes an RF frequency translated bandpass filter (FTBPF), an LNA, and a mixing section. The RF FTBPF frequency translates a baseband filter response to an RF filter response and filters an inbound RF signal in accordance with the RF filter response, wherein the inbound RF signal includes a loss error due to switching loss and/or inductor loss. The RF FTBPF also compensates the loss error based on a negative resistance. The LNA amplifies the compensated inbound RF signal and the mixing section mixes the amplified inbound RF signal with a local oscillation to produce an inbound IF signal. The receiver IF to baseband section converts the inbound IF signal into one or more inbound symbol streams.Type: ApplicationFiled: March 30, 2011Publication date: December 8, 2011Applicant: BROADCOM CORPORATIONInventors: Ahmad Mirzaei, Hooman Darabi
-
Publication number: 20110298641Abstract: Embodiments of a flash analog-to-digital converter (ADC) that can detect and suppress bubbles in a thermometer code of a flash ADC are provided herein. Bubbles can result in large sparkle errors, which degrade the bit error rates (BER) of flash ADCs. The present invention utilizes a bubble correction module that is configured to provide a bubble corrected one-of-N code by suppressing at least one of any two tops that are not separated by at least two levels within a one-of-N code.Type: ApplicationFiled: June 7, 2010Publication date: December 8, 2011Applicant: Broadcom CorporationInventors: Mehdi KHANPOUR, Adesh Garg, Bo Zhang
-
Publication number: 20110299433Abstract: A front-end module (FEM) includes first and second frequency band power amplifiers (PA), first and second frequency band receiver-transmitter (RX-TX) isolation modules, and an antenna interface unit. The PAs are operable to amplify first and second frequency band outbound RF signals, respectively. The RX-TX isolation modules are operable to isolate first and second frequency band inbound RF signals from first and second frequency band outbound RF signals in accordance with first and second frequency band isolation tuning signal, respectively. The antenna interface unit is operably tuned in accordance with an antenna interface tuning signal to output at least one of the first frequency band outbound RF signal and the second frequency band outbound RF signal and to receive at least one of the first frequency band inbound RF signal and the second frequency band inbound RF signal.Type: ApplicationFiled: March 30, 2011Publication date: December 8, 2011Applicant: BROADCOM CORPORATIONInventors: Hooman DARABI, Ahmadreza (Reza) ROFOUGARAN
-
Publication number: 20110300803Abstract: A system and method for enabling secure short-range communication. A close proximity transmitter is used that is designed with a relatively poor radiator as compared to a conventional transmitter supporting conventional transmissions such as mobile phone communications, Wi-Fi, or Bluetooth communication. The close-proximity transmitter and the conventional transmitter are selectively activated based on a communication mode.Type: ApplicationFiled: August 24, 2011Publication date: December 8, 2011Applicant: Broadcom CorporationInventors: Robert William Hulvey, John Walley
-
Publication number: 20110300822Abstract: Systems and methods that provide channel-adaptive antenna selection in multi-antenna-element communication systems are provided. In one embodiment, a method that selects a subset of receive antennas of a receiver to receive a transmitted RF signal may include, for example, one or more of the following: establishing possible subsets of the receive antennas; determining sets of channel parameter statistics corresponding to the possible subsets of the receive antennas; computing output bit error rates of the receiver, each output bit error rate being computed based on at least one set of channel parameter statistics; selecting a particular possible subset of the receive antennas based upon a criterion predicated on the computed output bit error rates; and connecting one or more RF chains of the receiver to the receive antennas of the selected particular possible subset.Type: ApplicationFiled: August 15, 2011Publication date: December 8, 2011Applicant: BROADCOM CORPORATIONInventors: Severine Catreux-Erceg, Vinko Erceg, Pieter Roux, Pieter Van Rooyen, Jack Winters
-
Publication number: 20110300813Abstract: A frequency translation filter includes a baseband filter circuit, a clock generator, and a switching circuit. The baseband filter circuit is operable to provide a baseband filter response. The clock generator is operable to generate multiple-phase clock signals at a desired frequency. The switching circuit is operable to frequency translate the baseband filter response of the baseband filter circuit to a high frequency filter response in accordance with the multiple-phase clock signals.Type: ApplicationFiled: June 3, 2011Publication date: December 8, 2011Applicant: BROADCOM CORPORATIONInventors: AHMAD MIRZAEI, DAVID MURPHY, HOOMAN DARABI
-
Publication number: 20110299437Abstract: A front end module includes a duplexer and a balancing network. The duplexer includes a compensation circuit and a transformer three windings having five nodes. The first node for operably coupling an antenna to the first winding; the second node operable to receive an outbound wireless signal and operably couples the first winding to the second winding; the third node operably couples the second winding to a balancing network; the fourth node operably coupled to output a first signal component corresponding to an inbound wireless signal from the third winding; and the fifth node operably coupled to output a second signal component corresponding to an inbound wireless signal from the third winding. The duplexer provides electrical isolation between the first and second signal components and the outbound wireless signal. The compensation module is operable to compensate the electrical isolation between the first and second signals and the outbound wireless signal.Type: ApplicationFiled: November 15, 2010Publication date: December 8, 2011Applicant: BROADCOM CORPORATIONInventors: Mohyee Mikhemar, Hooman Darabi
-
Publication number: 20110300810Abstract: A transceiver includes a local oscillation module, a transmitter section, and a receiver section. The local oscillation module is operable to generate a transmit local oscillation and a receive oscillation. The transmitter section includes a transmit mixing module and a transmit weaved connection that is operable to high frequency filter the transmit location oscillation. The transmit mixing module mixes the filtered transmit location oscillation with a transmit signal to produce an up-converted signal. The receiver section includes a receive mixing module and a receive weaved connection that is operable to high frequency filter the receive location oscillation. The receive mixing module mixes the filtered receive location oscillation with an RF received signal to produce a down-converted signal.Type: ApplicationFiled: June 3, 2011Publication date: December 8, 2011Applicant: BROADCOM CORPORATIONInventors: MOHYEE MIKHEMAR, HOOMAN DARABI
-
Publication number: 20110300818Abstract: A SAW-less transmitter includes an up-conversion mixing module, a frequency translated BPF (FTBPF), an output module, and a power amplifier driver. The up-conversion mixing module converts an outbound symbol stream into an up-converted signal. The FTBPF frequency translates a baseband filter response to an RF bandpass filter response and filter the up-converted signal in accordance with the RF bandpass filter response to produce a filtered up-converted signal. The output module conditions the filtered up-converted signal to produce a conditioned up-converted signal. The power amplifier driver amplifies the conditioned up-converted signal to produce an outbound RF signal.Type: ApplicationFiled: March 30, 2011Publication date: December 8, 2011Applicant: BROADCOM CORPORATIONInventors: Ahmad Mirzaei, Mohyee Mikhemar, Hooman Darabi
-
Patent number: 8073081Abstract: Systems and methods are disclosed for detecting temporary high level impairments, such as noise or interference, for example, in a communications channel, and subsequently, mitigating the deleterious effects of the dynamic impairments. In one embodiment, a preliminary decision is made on at least one signal transmitted over the communications channel. The at least one signal is remodulated and the impairment is determined using the at least one remodulate signal.Type: GrantFiled: June 14, 2007Date of Patent: December 6, 2011Assignee: Broadcom CorporationInventor: Thomas J. Kolze
-
Patent number: 8074155Abstract: Tail-biting turbo coding to accommodate any information and/or interleaver block size. The beginning and ending state of a turbo encoder can be made the same using a very small number of dummy bits. In some instances, any dummy bits that are added to an information block before undergoing interleaving are removed after interleaving and before transmission of a turbo coded signal via a communication channel thereby increasing throughput (e.g., those dummy bits are not actually transmitted via the communication channel). In other instances, dummy bits are added to both the information block that is encoded using a first constituent encoder as well as to an interleaved information block that is encoded using a second constituent encoder.Type: GrantFiled: July 30, 2007Date of Patent: December 6, 2011Assignee: Broadcom CorporationInventors: Ba-Zhong Shen, Tak K. Lee
-
Patent number: 8072290Abstract: Aspects of a method and system for generating quadrature signals utilizing an on-chip transformer are provided. In this regard, a pair of phase-quadrature signals may be generated from a single-phase signal via a transformer, one or more variable capacitors, and one or more variable resistors integrated on-chip. The transformer may comprise a plurality of loops fabricated in a plurality of metal layers in the chip. Each of the one or more variable capacitors may comprise a configurable capacitor bank and each of the one or more variable resistors may comprise a configurable resistor bank. The one or more capacitor banks may be programmatically configured on-chip, based on a frequency of the single-phase signal. The one or more resistor banks may be programmatically configured on-chip, based on a frequency of said single-phase signal.Type: GrantFiled: April 2, 2009Date of Patent: December 6, 2011Assignee: Broadcom CorporationInventors: Ahmadreza Rofougaran, Maryam Rofougaran
-
Patent number: 8072287Abstract: Aspects of a method and system for configurable differential or single-ended signaling in an integrated circuit. In this regard, a balun comprising one or more loops fabricated in a plurality of metal layers in an integrated circuit may enable conversion between unbalanced and balanced signals. In this regard, balanced signal output by a power amplifier may be converted to a balanced signal for transmission via an antenna. Similarly, an unbalanced signal received by an antenna may be converted to a balanced signal for amplification by an amplifier with a balanced input. The loops may be fabricated in transmission line media such as microstrip and/or stripline. The loops may comprise ferromagnetic material which may be deposited on and/or within the IC. Signals converted via the balun may be in the 61 GHz-61.5 GHz ISM band.Type: GrantFiled: March 27, 2008Date of Patent: December 6, 2011Assignee: Broadcom CorporationInventor: Ahmadreza Rofougaran
-
Patent number: 8072913Abstract: Collaborative coexistence of co-located mobile WiMAX, wireless LAN, and/or Bluetooth radios. Within a communication device that includes multi-protocol communication capability, the various radio modules included within such a communication device operate cooperatively such that collisions are avoided between those various radios. When a first of the radio modules operates as governed by a relatively rigid frame structure, a second of the radio modules capitalizes upon that predetermined nature (of the relatively rigid frame structure) to support communication during times in which that first radio module has a lower level of activity (e.g., turned off completely, within a power savings mode, in a sleep mode, etc.). The radio module operation is performed within a time-orthogonal manner, such that multiple radio modules are not attempting to transmit or receive simultaneously.Type: GrantFiled: March 14, 2008Date of Patent: December 6, 2011Assignee: Broadcom CorporationInventor: Prasanna Desai
-
Patent number: 8073083Abstract: Sliding block traceback decoding of block codes. Block by block basis decoding is performed in which a single block, and its corresponding overlap portion, are processed during a given time. The traceback saves a record of decision (e.g., among possible trellis branches between various trellis stages) and constructs only the surviving paths through each individual block. Since only one block (by also employing its corresponding overlap portion) is decoded per time, the traceback through the coded block signal is short. One block of the coded block signal is decoded at a time, and certain resulting information (e.g., bit estimates and/or states) of a first decoded block can be leveraged when decoding a second/adjacent block.Type: GrantFiled: April 29, 2008Date of Patent: December 6, 2011Assignee: Broadcom CorporationInventors: William Gene Bliss, Arthur Abnous
-
Patent number: 8074146Abstract: Multiple cyclic redundancy check (CRC) engines for checking/appending CRCs during data transfers. Two distinctly implemented CRC engines are employed to enable the processing of different sized byte formats at two ends of a communication channel. These two distinctly implemented CRC engines can be employed to enable the processing of different sized byte formats in a host device at one end and an hard disk drive (HDD) at another end. For example, sometimes the size of blocks, frames, and/or sector sizes that are processed and employed within a first communication device at one end of a communication channel can differ from the size of blocks, frames, and/or sector sizes that are processed and employed within a second communication device at another end of the communication channel. Two distinctly implemented CRC engines allow the appropriate processing and translation of any desired different sized blocks, frames, and/or sector sizes of a communication channel.Type: GrantFiled: January 11, 2008Date of Patent: December 6, 2011Assignee: Broadcom CorporationInventor: John P. Mead
-
Single chip wireless transceiver operable to perform voice, data and radio frequency (RF) processing
Patent number: 8073397Abstract: A single chip wireless transceiver operable to perform voice, data and radio frequency (RF) processing is provided. This processing may be divided between various processing modules. This single chip includes a processing module having an ARM microprocessor and a digital signal processor (DSP), an RF section, and an interface module. The processing module converts an outbound voice signal into an outbound voice symbol stream, converts an inbound voice symbol stream into an inbound voice signal, converts outbound data into an outbound data symbol stream, and converts an inbound data symbol stream into inbound data. These functions may be divided between the ARM microprocessor and DSP, where the DSP supports physically layer type applications and the ARM microprocessor supports higher layer applications. Further bifurcation may be based on voice applications, data applications, and/or RF control.Type: GrantFiled: April 8, 2011Date of Patent: December 6, 2011Assignee: Broadcom CorporationInventors: Vafa James Rakshani, Nelson R. Sollenberger, Claude G. Hayek, Frederic Christian Marc Hayem -
Patent number: 8073417Abstract: Aspects of a method and system for a transformer-based high performance cross-coupled low noise amplifier may include one or more circuits that integrate within a single chip, a balun with a low-noise amplifier. A DC current biasing path for the low-noise amplifier may be provided through the integrated balun. The low-noise amplifier may be configured as a cross-coupled low-noise amplifier, where the balun may be directly coupled to the cross-coupled low-noise amplifier. The balun may comprise two or more inductors, wherein one or more of the inductors may provide an electrical path for allowing a DC bias current to flow to ground. Integrating a balun on a single chip with a low-noise amplifier may allow the use of a single received signal input terminal. The biasing voltage may be selected to optimize performance of the low-noise amplifier.Type: GrantFiled: December 31, 2006Date of Patent: December 6, 2011Assignee: Broadcom CorporationInventors: Yuyu Chang, Arya Behzad