Abstract: According to one embodiment, a semiconductor structure including an integrated native device without a halo implanted channel region comprises an arrangement of semiconductor devices formed over a common substrate, the arrangement includes native devices disposed substantially perpendicular to non-native devices, wherein each of the native and non-native devices includes a respective channel region. The arrangement is configured to prevent formation of halo implants in the native device channel regions during halo implantation of the non-native device channel regions. In one embodiment, the disclosed native devices comprise native transistors capable of avoiding threshold voltage roll-up for channel lengths less than approximately 0.5 um.
Abstract: A network device for implementing high-rate greenfield transmission in a mixed mode frame structure. The network device is configured to transmit a mixed mode frame on two adjacent channels. The mixed mode frame comprises at least two backward compatible portions of a first frequency and a greenfield portion of a second frequency.
Abstract: The present invention provides digital subscriber line noise mitigation techniques, and applications thereof. In an embodiment, the present invention provides a toolbox of methods and techniques for mitigating the effects of noise in xDSL systems. These methods and techniques are controllable and locatable at one or both ends of a DSL communication link (e.g., within a central office transceiver unit or a remote transceiver unit). These novel methods and techniques include: (1) per tone noise margin modification, (2) data framer constraints modification, (3) improved noise measurements; (4) more robust on-line reconfiguration processes, (5) worst case noise monitoring, (6) induced bit rate limitations, and (7) distortion noise mitigation. These methods and techniques are particularly useful for mitigating the effects of time-varying noise and impulse noise.
Type:
Application
Filed:
May 9, 2011
Publication date:
September 1, 2011
Applicant:
Broadcom Corporation
Inventors:
Olivier Van de Wiel, Koen Vanbleu, Jean Boxho, Miguel Peeters
Abstract: According to one embodiment, a one-time programmable (OTP) semiconductor device includes a programming dielectric under a patterned electrode and over an implant region, where the programming dielectric forms a programming region of the OTP semiconductor device. The OTP semiconductor device further includes an isolation region laterally separating the programming dielectric from a coupled semiconductor structure, where the isolation region can be used in conjunction with the patterned electrode and the implant region to protect the coupled semiconductor structure. In one embodiment, the programming dielectric comprises a gate dielectric. In another embodiment, the electrode and implant regions are doped to be electrochemically similar.
Abstract: Multi-code LDPC (Low Density Parity Check) decoder. Multiple LDPC coded signals can be decoded using hardware provisioned for a minimum requirement needed to decode each of the multiple LDPC coded signals. In embodiments where each LDPC matrix (e.g., employed to decode each LDPC coded signal) includes a common number of non-null sub-matrices, then a same number of memories are employed when decoding each LDPC coded signal. However, those particular memories employed can be different subsets for when decoding each LDPC coded signal. In embodiments where each LDPC code includes a different number of non-null sub-matrices within its respective LDPC matrix, then a different number of memories are employed when decoding each LDPC coded signal. Various degrees of parallelism in decoding can also be employed in which different numbers of bit engines and check engines can be employed when decoding different LDPC coded signals.
Abstract: A system and method for requesting additional bandwidth in a communications channel between one or more first satellite terminal devices and a second satellite terminal device, are provided. The method includes identifying an available field in a header to be transmitted from the one or more first devices to the second device and allocating at least a portion of the available field for requesting the additional bandwidth. A size of the available field is reconfigurable. The method also includes forwarding the extend header to the second device.
Type:
Grant
Filed:
April 23, 2003
Date of Patent:
August 30, 2011
Assignee:
Broadcom Corporation
Inventors:
Mark Dale, Dorothy D Lin, Alan Gin, Jen-Chieh Chien, David Hartman, Rocco J Brescia, Jr., Ravi C Bhaskaran, Adel F Fanous
Abstract: A technique for agile region and band conscious frequency planning for wireless transceivers in which a comparison frequency is selected for generating a local oscillator signal. The comparison frequency (Fcomp) is selected for a frequency band of a particular communication standard or protocol, in order not to introduce harmonic components of the selected comparison frequency in a transmitted signal from the wireless device that generates spurious emissions restricted by the particular communication protocol or another protocol. The Fcomp selection may also take into consideration restrictive region-specific criteria for out-of band spurious emissions.
Type:
Grant
Filed:
February 26, 2008
Date of Patent:
August 30, 2011
Assignee:
Broadcom Corporation
Inventors:
Nikolaos C. Haralabidis, Theodoros Georgantas
Abstract: A method and apparatus in an integrated circuit radio transceiver are operable to apply a modified control signal to drive logic that includes a plurality of first devices having a first threshold voltage and a first gate oxide thickness that are both greater than a second threshold voltage and a second gate oxide thickness for a greater second plurality of devices within the integrated circuit radio transceiver. The transceiver therefore generates a first control signal having a first magnitude operable to drive logic that includes a plurality of devices having a second threshold voltage and applies the first control signal to a level shifter to produce the modified control signal.
Abstract: A programmable transmitter generates a frame in a frame format according to one of a plurality of operating modes using a frame structure table storing a respective frame format for each of the operating modes. The transmitter includes a frame structure engine that receives a mode selection signal indicative of a select operating mode, and accesses the frame structure table to determine the frame format of the select operating mode. The frame structure engine produces a control signal to a frame generator to control the generation of a frame in the frame format of the select operating mode.
Type:
Grant
Filed:
December 30, 2008
Date of Patent:
August 30, 2011
Assignee:
Broadcom Corporation
Inventors:
Joachim S. Hammerschmidt, Bruce E. Edwards, Venkat Kodavati, Rajendra Tushar Moorti, Ling Su, Jason A. Trachewsky, Andrew Wagner
Abstract: Method and apparatus for processing satellite signals in an SPS receiver is described. In one example, the satellite signals are correlated against pseudorandom reference codes to produce correlation results. A determination is made whether the SPS receiver is in a motion condition or a stationary condition. The correlation results are coherently integrated in accordance with a coherent integration period. The coherent integration period is a value that depends upon the motion condition of the SPS receiver.
Abstract: A method of accommodating aberrant behavior in wireless devices in a wireless network includes the steps of establishing communication with at least one wireless device, monitoring signals received from the at least one wireless device, determining characteristics of the at least one wireless device based on the monitored signals, comparing the determined characteristics with prescribed characteristics for wireless devices exhibiting aberrant behavior and altering settings to accommodate the at least one wireless device, when the determined characteristics match the prescribed characteristics.
Abstract: An integrated circuit (IC) includes a baseband processing module and a radio frequency (RF) section. The baseband processing module is coupled to convert outbound data into amplitude modulation information and phase modulation information when the IC is in a cellular data mode and to convert an outbound radio frequency identification (RFID) signal into RFID amplitude modulation information when the IC is in an RFID mode. The RF section is coupled to generate an outbound RF data signal in accordance with the amplitude modulation information and the phase modulation information when the IC is in the cellular data mode and to generate an outbound RF RFID signal in accordance with the RFID amplitude information when the IC is in the RFID mode.
Abstract: A system and method for dynamically swapping master and slave physical layer devices (PHYs) in energy efficient Ethernet (EEE). A physical layer communication mechanism can be used to dynamically reassign the master/slave assignments to facilitate the asymmetric application of EEE to a link.
Abstract: A method and apparatus is disclosed to extend a dynamic input range of an analog to digital converter (ADC). A composite ADC may include one or more ADCs. The one or more ADCs compare a signal metric of an analog input signal to quantization levels to produce intermediate digital output signals using one or more non-clipping input values. The composite ADC may select among the one or more intermediate digital output signals based on the signal metric of the analog input signal to produce a final digital output.
Type:
Grant
Filed:
May 11, 2009
Date of Patent:
August 30, 2011
Assignee:
Broadcom Corporation
Inventors:
Bruce J. Currivan, Thomas J. Kolze, Lin He, Loke Tan, Ramon Gomez, Francesco Gatta
Abstract: A power status signal is received in an integrated circuit that indicates an inductive power status of an off-chip inductive power module and a battery power status of a battery. A power mode is selected based on the at least one power status signal. A power mode signal is generated based on the selected power mode. A power supply signal is generated and adjusted in response to the power mode signal.
Abstract: Systems and methods of coding progressive content with isolated fields for conversion to interlaced display are provided. Some systems and methods may find use in, for example, digital video compression systems and methods. Film material may be encoded as video material with an intended field polarity and an explicit 3:2 pull-down operation for interlaced display (e.g., a 30-frames-per-second display).
Type:
Grant
Filed:
May 24, 2007
Date of Patent:
August 30, 2011
Assignee:
Broadcom Corporation
Inventors:
Sherman (Xuemin) Chen, Alexander G. MacInnis
Abstract: Disclosed herein is a wireless infrastructure node configured to receive a discovery message from a wireless control device, and reply to the wireless control device with a connection request if the wireless infrastructure node is not statically assigned to another wireless control device and the wireless infrastructure node is not being managed by another wireless control device.
Type:
Grant
Filed:
June 27, 2007
Date of Patent:
August 30, 2011
Assignee:
Broadcom Corporation
Inventors:
Andrey L. Tsigler, Kishore B. Padmanabha, Dana L. Fowler, Murali K. Policharla
Abstract: A host interface module includes a millimeter wave transceiver that is coupled to wirelessly communicate read commands, write commands, read data and write data between a flash memory device and a host device over a millimeter wave communication path in accordance with a host interface protocol. A protocol conversion module is coupled to convert the read commands, the write commands and the write data from the host interface protocol and to convert the read data to the host interface protocol. A host module is coupled to decode the read commands and the write commands from the host device, to process the read commands to retrieve the read data from the flash memory and to process the write commands to write the write data to the flash memory.
Abstract: Provided is a method to design an integrated circuit. The method reduces a time delay between introduction of a new lithography process and a start of production. A first semiconductor mask is designed at a first process feature size. The first process feature size can be based on an anticipated process feature size of the new lithography process. A second semiconductor mask is created by enlarging the first semiconductor mask to a second process feature size for which production is available. Thus, the second process feature size is larger than the first process feature size. An integrated circuit (IC) is fabricated with the second semiconductor mask. After the new semiconductor process has been developed and is available for production, another IC is fabricated with the first semiconductor mask.