Patents Assigned to Brookhaven Science Associates
  • Patent number: 10049848
    Abstract: Technologies are described for methods for fabricating a film component. The methods may comprise sputtering a first film onto a substrate. The first film may include a semiconductor compound material. The semiconductor compound material may include a semi-metal material and one or more alkali material. The methods may further comprise evaporating a second film onto the first film. The second film may include the one or more alkali materials. The one or more alkali materials may catalyze crystallization of the semiconductor compound material in the first film substantially throughout the first film to form the film component in the first layer.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: August 14, 2018
    Assignees: Brookhaven Science Associates, LLC, The Regents of the University of California
    Inventors: John Smedley, Klaus Attenkofer, Susanne Schubert, Mengjia Gaowei, John Walsh
  • Patent number: 9976155
    Abstract: Compositions and methods include genetically encoding and expressing a novel ?9-18:0-ACP desaturase in plant cells. In some embodiments, nucleic acid molecules encode the novel ?9-18:0-ACP desaturase. In other embodiments, amino acid sequences have ?9-18:0-ACP desaturase activity. Methods can involve expression of ?9-18:0-ACP desaturase in plant cells, plant materials, and whole plants for the purpose of increasing the amount of unusual fatty acids in whole plants, plant seeds, and plant materials, for example, seeds.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: May 22, 2018
    Assignees: Dow AgroSciences LLC, Brookhaven Science Associates, LLC
    Inventors: John Shanklin, Tam Huu Nguyen, Terence A. Walsh, Mark S. Pidkowich, Edward J. Whittle
  • Patent number: 9976199
    Abstract: Embodiments of the disclosure relate to intermetallic nanoparticles. Embodiments include nanoparticles having an intermetallic core including a first metal and a second metal. The first metal may be palladium and the second metal may be at least one of cobalt, iron, nickel, or a combination thereof. The nanoparticles may further have a shell that includes palladium and gold.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: May 22, 2018
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Kurian A. Kuttiyiel, Kotaro Sasaki, Radoslav R. Adzic
  • Patent number: 9957514
    Abstract: The present disclosure provides methods and compositions for genetic transformation of Lemnaceae species.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: May 1, 2018
    Assignees: Cold Spring Harbor Laboratory, Brookhaven Science Associates, LLC
    Inventors: Rob Martienssen, Almudena Molla-Morales, Alex Cantó-Pastor, Evan Ernst, John Shanklin, Yiheng Yan
  • Patent number: 9916958
    Abstract: Methods and systems for fabricating a film, such as, for example, a photocathode, having a tailored band structure and thin-film components that can be tailored for specific applications, such as, for example photocathode having a high quantum efficiency, and simple components fabricated by those methods.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: March 13, 2018
    Assignees: RADIATION MONITORING DEVICES, INC., THE UNIVERSITY OF CHICAGO, BROOKHAVEN SCIENCE ASSOCIATES, LLC
    Inventors: Harish B. Bhandari, Vivek V. Nagarkar, Olena E. Ovechkina, Henry J. Frisch, Klaus Attenkofer, John M. Smedley
  • Patent number: 9895434
    Abstract: The invention relates to the development of chimeric OspA molecules for use in a new Lyme vaccine. More specifically, the chimeric OspA molecules comprise the proximal portion from one OspA serotype, together with the distal portion from another OspA serotype, while retaining antigenic properties of both of the parent polypeptides. The chimeric OspA molecules are delivered alone or in combination to provide protection against a variety of Borrelia genospecies. The invention also provides methods for administering the chimeric OspA molecules to a subject in the prevention and treatment of Lyme disease or borreliosis.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: February 20, 2018
    Assignees: Research Foundation of the State University of New York, Brookhaven Science Associates, LLC
    Inventors: Brian A. Crowe, Ian Livey, Maria O'Rourke, Michael Schwendinger, John J. Dunn, Benjamin J. Luft
  • Patent number: 9882222
    Abstract: Nitride stabilized metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous noble metal shell with a nitride-stabilized non-noble metal core. The nitride-stabilized core provides a stabilizing effect under high oxidizing conditions suppressing the noble metal dissolution during potential cycling. The nitride stabilized nanoparticles may be fabricated by a process in which a core is coated with a shell layer that encapsulates the entire core. Introduction of nitrogen into the core by annealing produces metal nitride(s) that are less susceptible to dissolution during potential cycling under high oxidizing conditions.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: January 30, 2018
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Kurian Abraham Kuttiyiel, Kotaro Sasaki, Radoslav R. Adzic
  • Publication number: 20180024254
    Abstract: Technologies are described for semiconductor radiation detectors. The semiconductor radiation detectors may comprise a semiconductor material. The semiconductor material may include a first surface and a second surface. The first surface may be opposite from the second surface. The semiconductor material may include at least one metal component. The semiconductor material may be effective to absorb radiation and induce a current pulse in response thereto. The semiconductor radiation detector may comprise an electrode contact. The electrode contact may include a metal doped oxide deposited on the first surface of the semiconductor material. The metal doped oxide may include the metal component element of the semiconductor material.
    Type: Application
    Filed: February 12, 2016
    Publication date: January 25, 2018
    Applicants: BROOKHAVEN SCIENCE ASSOCIATES, LLC, NORFOLK STATE UNIVERSITY
    Inventors: UTPAL N. ROY, RALPH B. JAMES, ALEKSEY BOLOTNIKOV, GIUSEPPE CAMARDA, YONGGANG CUI, ANWAR HOSSAIN, GE YANG, ASWINI PRADHAN, RAJ EH MUNDLE
  • Patent number: 9875821
    Abstract: Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and walls defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: January 23, 2018
    Assignee: Brookhaven Science Associates, LLC
    Inventors: John Jay Sinsheimer, Raymond P. Conley, Nathalie C. D. Bouet, Eric Dooryhee, Sanjit Ghose
  • Patent number: 9850291
    Abstract: The present invention discloses a novel gene encoding a transporter protein trigalactosyldiacylglycerol-5 (TGD5), mutations thereof and their use to enhance TAG production and retention in plant vegetative tissue.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: December 26, 2017
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Changcheng Xu, Jilian Fan, Chengshi Yan, John Shanklin
  • Patent number: 9853255
    Abstract: Embodiments of the disclosure relate to membrane electrode assemblies. The membrane electrode assembly may include at least one gas-diffusion layer having a first side and a second side, and particle cores adhered to at least one of the first and second sides of the at least one gas-diffusion layer. The particle cores includes surfaces adhered to the at least one of the first and second sides of the at least one gas-diffusion layer and surfaces not in contact with the at least one gas-diffusion layer. Furthermore, a thin layer of catalytically atoms may be adhered to the surfaces of the particle cores not in contact with the at least one gas-diffusion layer.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: December 26, 2017
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Radoslav Adzic, Stoyan Bliznakov, Miomir Vukmirovic
  • Patent number: 9842958
    Abstract: A method of forming electrical contacts on a diamond substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The mixture of gases include a source of a p-type or an n-type dopant. The plasma ball is disposed at a first distance from the diamond substrate. The diamond substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the diamond substrate for a first time, and a UNCD film, which is doped with at least one of a p-type dopant and an n-type dopant, is disposed on the diamond substrate. The doped UNCD film is patterned to define UNCD electrical contacts on the diamond substrate.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: December 12, 2017
    Assignees: UChicago Argonne, LLC, Brookhaven Science Associates, LLC, The Research Foundation for the State University of New York
    Inventors: Anirudha V. Sumant, John Smedley, Erik Muller
  • Patent number: 9837814
    Abstract: A radio frequency-assisted fast superconducting switch is described. A superconductor is closely coupled to a radio frequency (RF) coil. To turn the switch “off,” i.e., to induce a transition to the normal, resistive state in the superconductor, a voltage burst is applied to the RF coil. This voltage burst is sufficient to induce a current in the coupled superconductor. The combination of the induced current with any other direct current flowing through the superconductor is sufficient to exceed the critical current of the superconductor at the operating temperature, inducing a transition to the normal, resistive state. A by-pass MOSFET may be configured in parallel with the superconductor to act as a current shunt, allowing the voltage across the superconductor to drop below a certain value, at which time the superconductor undergoes a transition to the superconducting state and the switch is reset.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: December 5, 2017
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Vyacheslav Solovyov, Qiang Li
  • Patent number: 9821285
    Abstract: A method for providing 11C-labeled cyanides from 11C labeled oxides in a target gas stream retrieved from an irradiated high pressure gaseous target containing O2, wherein 11C labeled oxides are reduced with H2 in the presence of a nickel catalyst under a pressure and a temperature sufficient to form a product stream comprising at least about 95% 11CH4, the 11CH4 is then combined with an excess of NH3 in a carrier/reaction stream flowing at an accelerated velocity and the combined 11CH4 carrier/reaction stream is then contacted with a platinum (Pt) catalyst particulate supported on a substantially-chemically-nonreactive heat-stable support at a temperature of at least about 900° C., whereby a product stream comprising at least about 60% H11CN is provided in less than 10 minutes from retrieval of the 11C labeled oxide.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: November 21, 2017
    Assignee: BROOKHAVEN SCIENCE ASSOCIATES, LLC
    Inventors: Dohyun Kim, David Alexoff, Sung Won Kim, Jacob M. Hooker, Richard A. Ferrieri
  • Publication number: 20170324215
    Abstract: Technologies are described for methods to fabricate lasers to amplify light. The methods may comprise depositing nanoparticles on a substrate. The length, width, and height of the nanoparticles may be less than 100 nm. The methods may further comprise distributing the nanoparticles on the substrate to produce a film. The nanoparticles in the film may be coupled nanoparticles. The coupled nanoparticles may be in disordered contact with each other within the film. The distribution may be performed such that constructive interference of the light occurs by multiple scattering at the boundaries of the coupled nanoparticles within the film. The methods may comprise exposing the film to a power source.
    Type: Application
    Filed: May 4, 2017
    Publication date: November 9, 2017
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Matthew Y. Sfeir, Kannatassen Appavoo, Xiaoze Liu, Vinod M. Menon
  • Patent number: 9793036
    Abstract: A dipole-magnet system and method for producing high-magnetic-fields, including an open-region located in a radially-central-region to allow particle-beam transport and other uses, low-temperature-superconducting-coils comprised of low-temperature-superconducting-wire located in radially-outward-regions to generate high magnetic-fields, high-temperature-superconducting-coils comprised of high-temperature-superconducting-tape located in radially-inward-regions to generate even higher magnetic-fields and to reduce erroneous fields, support-structures to support the coils against large Lorentz-forces, a liquid-helium-system to cool the coils, and electrical-contacts to allow electric-current into and out of the coils. The high-temperature-superconducting-tape may be comprised of bismuth-strontium-calcium-copper-oxide or rare-earth-metal, barium-copper-oxide (ReBCO) where the rare-earth-metal may be yttrium, samarium, neodymium, or gadolinium.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: October 17, 2017
    Assignees: Particle Beam Lasers, Inc., Brookhaven Science Associates, LLC
    Inventors: Ramesh Gupta, Ronald Scanlan, Arup K. Ghosh, Robert J. Weggel, Robert Palmer, Michael D. Anerella, Jesse Schmalzle
  • Patent number: 9755229
    Abstract: Novel intermetallic materials are provided that are composed of tin and one or more additional metal(s) having a formula M(1-x)-Sn5, where ?0.1?x?0.5, with 0.01?x?0.4 being more preferred and the second metallic element (M) is selected from iron (Fe), copper (Cu), cobalt (Co), nickel (Ni), and a combination of two or more of those metals. Due to low concentration of the second metallic element, the intermetallic compound affords an enhanced capacity applicable for electrochemical cells and may serve as an intermediate phase between Sn and MSn2. A method of synthesizing these intermetallic materials is also disclosed.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: September 5, 2017
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Xiao-Liang Wang, Weiqiang Han
  • Patent number: 9751758
    Abstract: A method for lattice design via multivalent linkers (LDML) is disclosed that introduces a rationally designed symmetry of connections between particles in order to achieve control over the morphology of their assembly. The method affords the inclusion of different programmable interactions within one linker that allow an assembly of different types of particles. The designed symmetry of connections is preferably provided utilizing DNA encoding. The linkers may include fabricated “patchy” particles, DNA scaffold constructs and Y-shaped DNA linkers, anisotropic particles, which are preferably functionalized with DNA, multimeric protein-DNA complexes, and particles with finite numbers of DNA linkers.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: September 5, 2017
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Oleg Gang, Fang Lu, Miho Tagawa
  • Patent number: 9716279
    Abstract: Embodiments of the disclosure relate to electrocatalysts. The electrocatalyst may include at least one gas-diffusion layer having a first side and a second side, and particle cores adhered to at least one of the first and second sides of the at least one gas-diffusion layer. The particle cores includes surfaces adhered to the at least one of the first and second sides of the at least one gas-diffusion layer and surfaces not in contact with the at least one gas-diffusion layer. Furthermore, a thin layer of catalytically atoms may be adhered to the surfaces of the particle cores not in contact with the at least one gas-diffusion layer.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: July 25, 2017
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Radoslav Adzic, Stoyan Bliznakov, Miomir Vukmirovic
  • Patent number: 9689085
    Abstract: A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves electrochemically exchanging a mediating element on a substrate with a noble metal film by alternatingly sweeping potential in forward and reverse directions for a predetermined number of times in an electrochemical cell. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: June 27, 2017
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Jia Xu Wang, Radoslav R. Adzic