Patents Assigned to Brooks Automation
-
Publication number: 20140147234Abstract: A substrate aligner providing minimal substrate transporter extend and retract motions to quickly align substrate without back side damage while increasing the throughput of substrate processing. In one embodiment, the aligner having an inverted chuck connected to a frame with a substrate transfer system capable of transferring substrate from chuck to transporter without rotationally repositioning substrate. The inverted chuck eliminates aligner obstruction of substrate fiducials and along with the transfer system, allows transporter to remain within the frame during alignment. In another embodiment, the aligner has a rotatable sensor head connected to a frame and a substrate support with transparent rest pads for supporting the substrate during alignment so transporter can remain within the frame during alignment. Substrate alignment is performed independent of fiducial placement on support pads.Type: ApplicationFiled: September 30, 2013Publication date: May 29, 2014Applicant: Brooks Automation, Inc.Inventors: Jairo T. Moura, Martin Hosek, Todd Bottomley, Ulysses Gilchrist
-
Publication number: 20140144165Abstract: In accordance with an embodiment of the invention, there is provided a method of warming a heat exchanger array of a very low temperature refrigeration system, the method comprising diverting at least a portion of refrigerant flow in the refrigeration system away from a refrigerant flow circuit used during very low temperature cooling operation of the refrigeration system, to effect warming of at least a portion of the heat exchanger array; and while diverting the at least a portion of refrigerant flow, preventing excessive refrigerant mass flow through a compressor of the refrigeration system.Type: ApplicationFiled: June 29, 2012Publication date: May 29, 2014Applicant: BROOKS AUTOMATION, INC.Inventors: Kevin P. Flynn, Yongqiang Qiu, HaeYong Moon
-
Publication number: 20140130527Abstract: A refrigerant management system controls the supply of refrigerant from two or more variable speed and fixed speed compressors to a plurality of cryogenic refrigerators. The system employs a plurality of sensors to monitor and regulate the overall refrigerant supply to deliver an appropriate refrigerant supply to each of the cryogenic refrigerators. The amount of refrigerant to supply is based on an aggregate demand for refrigerant from the plurality of cryogenic refrigerators and a refrigerant correction metric. An appropriate supply of refrigerant is distributed to each cryogenic refrigerator by adjusting the speed of the variable speed compressors or, alternatively, selectively turning the compressors on or off. The speed of the variable speed compressors is adjusted by determining an amount of refrigerant to supply to the plurality of cryogenic refrigerators.Type: ApplicationFiled: March 5, 2012Publication date: May 15, 2014Applicant: BROOKS AUTOMATION, INC.Inventors: Oliver J. Dumas, Maureen C. Buonpane, Doreen J. Ball-DiFazio, Ronald N. Morris, Allen J. Bartlett, Leonard A. Loranger, Joseph Chopy, JR., Robert P. Sullivan, John J. Varone, Paul E. Amundsen
-
Publication number: 20140126987Abstract: A substrate transport apparatus having a frame, a drive section and an articulated arm. The drive section has at least one motor module that is selectable for placement in the drive section from a number of different interchangeable motor modules. Each having a different predetermined characteristic. The articulated arm has articulated joints. The arm is connected to the drive section for articulation. The arm has a selectable configuration selectable from a number of different arm configurations each having a predetermined configuration characteristic. The selection of the arm configuration is effected by selection of the at least one motor module for placement in the drive section.Type: ApplicationFiled: November 4, 2013Publication date: May 8, 2014Applicant: Brooks Automation Inc.Inventors: Ulysses Gilchrist, Christopher Hofmeister
-
Publication number: 20140119856Abstract: In accordance with one aspect of the exemplary embodiments, a substrate transport apparatus is provided comprising a drive mechanism, a movable arm assembly connected to the drive mechanism, an end effector connected to the arm assembly. A chuck for holding a substrate is mounted on the end effector and having a movable edge gripper with a contact surface and an edge of the substrate may be gripped by actuating the movable edge gripper to engage the substrate with the contact surface. The apparatus further comprising a motion sensor for providing a signal to actuate the movable edge gripper to close and open the moveable edge gripper for capturing and releasing the substrate.Type: ApplicationFiled: January 7, 2014Publication date: May 1, 2014Applicant: Brooks Automation, Inc.Inventors: Michael Duhamel, Richard J. Pickreign
-
Patent number: 8696298Abstract: A variety of process modules are described for use in semiconductor manufacturing processes.Type: GrantFiled: October 23, 2007Date of Patent: April 15, 2014Assignee: Brooks Automation, Inc.Inventors: Peter van der Meulen, Christopher C Kiley, Patrick D. Pannese
-
Patent number: 8686733Abstract: An ionization gauge includes an electron generator array that includes a microchannel plate that includes an electron generating portion of the microchannel plate comprising a source for generating seed electrons and an electron multiplier portion of the microchannel plate, responsive to the seed electrons generated by the electron generating portion, that multiplies the electrons. The ionization gauge includes an ionization volume in which the electrons impact a gaseous species, and a collector electrode for collecting ions formed by the impact between the electrons and gas species. The collector electrode can be surrounded by the anode, or the ionization gauge can be formed with multiple collector electrodes. The source of electrons can provide for a spontaneous emission of electrons, where the electrons are multiplied in a cascade.Type: GrantFiled: December 17, 2008Date of Patent: April 1, 2014Assignee: Brooks Automation, Inc.Inventor: Gerardo A. Brucker
-
Patent number: 8680803Abstract: In accordance to an aspect of the disclosed embodiments, a substrate transport apparatus is provided. The substrate transport apparatus includes a frame defining a chamber, at least one stator module embedded at least partly into a peripheral wall of the chamber, the at least one stator module defining an axis of rotation. The substrate transport apparatus further includes at least one rotor substantially concentrically disposed relative to the at least one stator module about the axis of rotation, the at least one rotor being configured to interface with the at least one stator module and being suspended by a respective one of the at least one stator module substantially without contact within the chamber. The substrate transport apparatus further includes at least one substrate transport arm connected to the at least one rotor and having at least one end effector configured to hold at least one substrate.Type: GrantFiled: August 6, 2012Date of Patent: March 25, 2014Assignee: Brooks Automation, Inc.Inventors: Alexander G. Krupyshev, Christopher Hofmeister
-
Patent number: 8678734Abstract: A substrate processing apparatus is provided. The apparatus has a casing, a low port interface and a carrier holding station. The casing has processing devices within for processing substrates. The load port interface is connected to the casing for loading substrates into the processing device. The carrier holding station is connected to the casing. The carrier holding station is adapted for holding at least one substrate transport carrier so the at least one substrate transport carrier is capable of being coupled to the load port interface without lifting the at least one substrate transport carrier off the carrier holding station. The carrier holding station is arranged to provide a substantially simultaneous swap section for substantially simultaneous replacement of the substrate transport carrier from the carrier holding station.Type: GrantFiled: October 4, 2010Date of Patent: March 25, 2014Assignee: Brooks Automation, Inc.Inventors: Gerald M. Friedman, Michael L. Bufano, Christopher Hofmeister, Ulysses Gilchrist, William Fosnight
-
Publication number: 20140081581Abstract: A measurement instrument having a processor, a first sensor and a second sensor. The processor is adapted to output a measurement signal embodying a measurement of a physical quantity. The first sensor and second sensor are connected to the processor and are operable to generate respectively first and second measurements of the physical quantity. The processor defines a first measurement range within which the measurement signal is dependent on the first measurement and not the second measurement. The processor defines a second measurement range within which the measurement signal is dependent on the second measurement and not the first measurement. The first and second ranges meet at a predetermined transition. The first and second measurements are different at the transition and the measurement embodied in the measurement signal crosses the transition without an abrupt change.Type: ApplicationFiled: November 18, 2013Publication date: March 20, 2014Applicant: BROOKS AUTOMATION INC.Inventor: Michael Borenstein
-
Patent number: 8672605Abstract: Modular wafer transport and handling facilities are combined in a variety of ways deliver greater levels of flexibility, utility, efficiency, and functionality in a vacuum semiconductor processing system. Various processing and other modules may be interconnected with tunnel-and-cart transportation systems to extend the distance and versatility of the vacuum environment. Other improvements such as bypass thermal adjusters, buffering aligners, batch processing, multifunction modules, low particle vents, cluster processing cells, and the like are incorporated to expand functionality and improve processing efficiency.Type: GrantFiled: February 4, 2008Date of Patent: March 18, 2014Assignee: Brooks Automation, Inc.Inventors: Peter van der Meulen, Christopher C Kiley, Patrick D. Pannese, Raymond S. Ritter, Thomas A. Schaefer
-
Patent number: 8662812Abstract: A semiconductor processing tool is disclosed, the tool having a frame forming at least one chamber with an opening and having a sealing surface around a periphery of the opening, a door configured to interact with the sealing surface for sealing the opening, the door having sides perpendicular to the door sealing surface and perpendicular to a transfer plane of a substrate, and at least one drive located on the frame to a side of at least one of the sides that are substantially perpendicular to the door sealing surface and substantially perpendicular to the transfer plane of the substrate, the drive having actuators located at least partially in front of the sealing surface and the actuators being coupled to one of the sides of the door for moving the door from a sealed position. The at least one drive is located outside of a substrate transfer zone.Type: GrantFiled: September 24, 2012Date of Patent: March 4, 2014Assignee: Brooks Automation, Inc.Inventors: Christopher Hofmeister, Martin R. Elliot, Alexander Krupyshev, Joseph Hallisey, Joseph A. Kraus, William Fosnight, Craig J. Carbone, Jeffrey C. Blahnik, Ho Yin Owen Fong
-
Publication number: 20140056678Abstract: A substrate transport apparatus having a drive section and a scara arm operably connected to the drive section to move the scara arm. The scara arm has an upper arm and at least one forearm. The forearm is movably mounted to the upper arm and capable of holding a substrate thereon. The upper arm is substantially rigid and is adjustable for changing a predetermined dimension of the upper arm.Type: ApplicationFiled: February 15, 2013Publication date: February 27, 2014Applicant: BROOKS AUTOMATION, INC.Inventor: Brooks Automation, Inc.
-
Patent number: 8659205Abstract: A motor includes a stator and a rotor, equipped to be movable in at least a first direction relative to the stator, the rotor operably interfacing the stator so that a motor force is generated in a first direction, where the stator comprises an anti-cogging element configured to generate anti-cogging forces on the rotor in at least the first direction and a second direction at an angle to the first direction.Type: GrantFiled: June 27, 2008Date of Patent: February 25, 2014Assignee: Brooks Automation, Inc.Inventors: Jairo Moura, Jay Krishnasamy, Martin Hosek
-
Patent number: 8651789Abstract: A substrate processing apparatus is presented having a transport chamber defining substantially linear substrate transport paths, a linear array of substrate holding modules, each communicably connected to the chamber. The substrate transport has at least one transporter capable of holding and moving the substrate on more than one substantially linear substrate transport paths. The transport chamber having different transport tubes at least one of which is sealable at both ends of the transport tube and configured to hold an isolated atmosphere different from that of the transport tubes, each of the different transport tubes having one of the substrate transport paths located therein different from another of the transport paths located in another of the transport tubes, and being communicably connected to each other, where at least one of the transport tubes is configured to provide uninterrupted transit of the substrate transport through the transport tubes.Type: GrantFiled: June 13, 2011Date of Patent: February 18, 2014Assignee: Brooks Automation, Inc.Inventors: Christopher Hofmeister, Robert T. Caveney
-
Patent number: 8651796Abstract: A substrate transport apparatus including a drive section having at least one drive shaft and at least two scara arms operably coupled to the at least one drive shaft, the at least one drive shaft being a common drive shaft for the at least two scara arms effecting extension and retraction of the at least two scara arms, wherein the at least two scara arms are coupled to each other so that, with the at least one drive shaft coupled to the at least two scara arms, rotation of the drive shaft effects extension and retraction of one of the at least two scara arms substantially independent of motion of another of the at least two scara arms.Type: GrantFiled: May 23, 2011Date of Patent: February 18, 2014Assignee: Brooks Automation, Inc.Inventors: Martin Hosek, Ulysses Gilchrist
-
Publication number: 20140044504Abstract: A substrate processing system including a load port module configured to hold at least one substrate container for storing and transporting substrates, a substrate processing chamber, an isolatable transfer chamber capable of holding an isolated atmosphere therein configured to couple the substrate processing chamber and the load port module, and a substrate transport mounted at least partially within the transfer chamber having a drive section fixed to the transfer chamber and having a SCARA arm configured to support at least one substrate, the SCARA arm being configured to transport the at least one substrate between the at least one substrate container and the processing chamber with but one touch of the at least one substrate, wherein the SCARA arm comprises a first arm link, a second arm link, and at least one end effector serially pivotally coupled to each other, where the first and second arm links have unequal lengths.Type: ApplicationFiled: October 21, 2013Publication date: February 13, 2014Applicant: Brooks Automation, Inc.Inventors: Christopher Hofmeister, Alexander Krupyshev, Ulysses Gilchrist
-
Patent number: 8648604Abstract: An ionization gauge to measure pressure and to reduce sputtering yields includes at least one electron source that generates electrons. The ionization gauge also includes a collector electrode that collects ions formed by the collisions between the electrons and gas molecules. The ionization gauge also includes an anode. An anode bias voltage relative to a bias voltage of a collector electrode is configured to switch at a predetermined pressure to decrease a yield of sputtering collisions.Type: GrantFiled: August 20, 2010Date of Patent: February 11, 2014Assignee: Brooks Automation, Inc.Inventor: Gerardo A. Brucker
-
Patent number: 8639489Abstract: Software for controlling processes in a heterogeneous semiconductor manufacturing environment may include a wafer-centric database, a real-time scheduler using a neural network, and a graphical user interface displaying simulated operation of the system. These features may be employed alone or in combination to offer improved usability and computational efficiency for real time control and monitoring of a semiconductor manufacturing process. More generally, these techniques may be usefully employed in a variety of real time control systems, particularly systems requiring complex scheduling decisions or heterogeneous systems constructed of hardware from numerous independent vendors.Type: GrantFiled: October 23, 2007Date of Patent: January 28, 2014Assignee: Brooks Automation, Inc.Inventors: Patrick D. Pannese, Vinaya Kavathekar, Peter van der Meulen
-
Patent number: 8636459Abstract: Within a storage compartment, closely spaced rows of adjacent stacks are supported on a plurality of parallel sliding rails. A pair of coordinated robots is positioned with one robot on one side of the stacks to push the stacks within a selected row toward the other robot. The pushing robot on one side of the row starts off with a starting stack supported in its support arms. The pushing robot pushes the starting stack into one end of the selected row, causing the row to shift toward the waiting receiving robot, which receives the stack at the opposite end of the row from the starting stack. A series of pushes between the two robots moves a stack containing a desired sample into alignment with an access port in the storage compartment.Type: GrantFiled: June 1, 2011Date of Patent: January 28, 2014Assignee: Brooks Automation, Inc.Inventor: Robert K. Neeper