Patents Assigned to Brooks Automation
  • Patent number: 11121017
    Abstract: A substrate loading device having a frame, a cassette support, and a user interface. The frame is connected to a substrate processing apparatus. The frame has a transport opening through which substrates are transported between the device and processing apparatus. The cassette support is connected to the frame for holding at least one substrate holding cassette. The user interface is arranged for inputting information, and is mounted to the frame so that the user interface is integral with the frame.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: September 14, 2021
    Assignee: BROOKS AUTOMATION, INC.
    Inventors: Daniel A. Hall, Glenn L. Sindledecker, Matthew W. Coady, Marcello Trolio, Michael Spinazola
  • Patent number: 11110598
    Abstract: A substrate transport apparatus including a frame, at least one arm link rotatably connected to the frame and a shaftless drive section. The shaftless drive section including stacked drive motors for rotating the at least one arm link relative to the frame through a shaftless interface, each of the stacked drive motors including a stator having stator coils disposed on a fixed post fixed relative to the frame and a rotor substantially peripherally surrounding the stator such that the rotor is connected to a respective one of the at least one arm link for rotating the one of the at least one arm link relative to the frame causing an extension or retraction of the one of the at least one arm link, where the stacked drive motors are disposed in the at least one arm link so that part of each stator is within a common arm link.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: September 7, 2021
    Assignee: BROOKS AUTOMATION, INC.
    Inventor: Robert T. Caveney
  • Patent number: 11088004
    Abstract: A substrate transport apparatus including a transport chamber, a drive section, a robot arm having an end effector at a distal end configured to support a substrate and being connected to the drive section generating at least arm motion in a radial direction extending and retracting the arm, an imaging system with a camera mounted in a predetermined location to image at least part of the robot arm, and a controller connected to the imaging system to image the arm moving to a predetermined repeatable position, the controller effecting capture of a first image of the robot arm proximate to the repeatable position decoupled from encoder data of the drive axis, wherein the controller calculates a positional variance of the robot arm from comparison of the first image with a calibration image, and from the positional variance determines a motion compensation factor changing the extended position of the robot arm.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: August 10, 2021
    Assignee: Brooks Automation, Inc.
    Inventors: Alexander Krupyshev, Leigh F. Sharrock
  • Patent number: 11077466
    Abstract: An end effector for transferring a tray is described. The end effector includes an end effector base attached to a vertical drive column of a tray engine. The end effector further includes a slide having multiple arms that are attached to the end effector base to support the tray, when present. The arms of the slide enable the tray to slide along a length of the end effector base. The arms face each other and extend along the length of the end effector base.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: August 3, 2021
    Assignee: Brooks Automation, Inc.
    Inventors: Anthony C. Bonora, Brian Compian, Jeff P. Henderson, Robert W. Carlson
  • Patent number: 11031265
    Abstract: Substrate loading device including a frame adapted to connect the substrate loading device to a substrate processing apparatus, the frame having a transport opening through which substrates are transported between the loading device and processing apparatus, a cassette support for holding at least one substrate cassette container, and cassette support purge ports with purge port nozzle locations disposed on the cassette support, each nozzle location being configured so that a nozzle at the nozzle location couples to at least one purge port of the substrate cassette container, wherein each nozzle location defines an interchangeable purge port nozzle interface so that different interchangeable purge port nozzles are removably mounted to respective nozzle interfaces of the nozzle locations that correspond to the different nozzle configurations of the interchangeable purge port nozzle modules, in conformance with and effecting coupling to different ports of different substrate cassette containers having different
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: June 8, 2021
    Assignee: Brooks Automation, Inc.
    Inventors: Radik Sunugatov, Robert Carlson
  • Patent number: 11020852
    Abstract: A substrate transport apparatus including; a frame, a substrate transport arm connected to the frame, the substrate transport arm having an end effector, and a drive section having at least one motor coupled to the substrate transport arm, wherein the at least one motor defines a kinematic portion of the drive section configured to effect kinematic motion of the substrate transport arm, and the drive section includes an accessory portion adjacent the kinematic portion, wherein the accessory portion has another motor, different and distinct from the at least one motor, the another motor of the accessory portion is operably coupled to and configured to drive one or more accessory device independent of the kinematic motion of the substrate transport arm.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: June 1, 2021
    Assignee: BROOKS AUTOMATION, INC.
    Inventors: Sean E Plaisted, Leigh F Sharrock, Chris Aitken
  • Patent number: 11002566
    Abstract: A sensing mechanism includes a magnetic source, a magnetic flux sensor, a sensor backing on which the magnetic source and flux sensor are mounted, and a ferromagnetic target, where the magnetic source, magnetic flux sensor, and ferromagnetic target are positioned to form a magnetic circuit from the magnetic source to the target, from the target to the sensor, and returning to the magnetic source through the sensor backing.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: May 11, 2021
    Assignee: Brooks Automation, Inc.
    Inventors: Martin Hosek, Jairo Moura, Jay Krishnasamy, Jeff Paranay
  • Patent number: 10978330
    Abstract: A Substrate processing apparatus including a wafer transport apparatus with a transport arm including an end effector, an arm pose deterministic feature integral to the substrate transport apparatus and disposed so that a static detection sensor of the substrate processing apparatus detects at least one edge of the at least one arm pose deterministic feature on the fly with radial motion of the transport arm, and a controller configured so that detection of the edge effects a determination of a proportion factor identifying at least a thermal expansion variance of the transport arm on the fly and includes a kinematic effects resolver configured to determine, from the detection of the edge on the fly, a discrete relation between the determined proportion factor and each different discrete variance respective to each different link of the transport arm determining at least the thermal expansion variance of the transport arm on the fly.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: April 13, 2021
    Assignee: Brooks Automation, Inc.
    Inventors: Bing Yin, Jairo T. Moura, Vincent Tsang, Aaron Gawlik, Nathan Spiker
  • Patent number: 10967511
    Abstract: A time-optimal trajectory generation method, for a robotic manipulator having a transport path with at least one path segment, comprising generating a forward time-optimal trajectory of the manipulator along the at least one path segment from a start point of the at least one path segment towards an end point of the at least one path segment, generating a reverse time-optimal trajectory of the manipulator along the at least one path segment from the end point towards the start point of the at least one path segment, and combining the time-optimal forward and reverse trajectories to obtain a complete time-optimal trajectory, where the forward and reverse trajectories of the at least one path segment are blended together with a smoothing bridge joining the time-optimal forward and reverse trajectories in a position-velocity reference frame with substantially no discontinuity between the time-optimal forward and reverse trajectories.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: April 6, 2021
    Assignee: Brooks Automation, Inc.
    Inventors: Jayaraman Krishnasamy, Martin Hosek
  • Patent number: 10923375
    Abstract: A substrate loading device including a frame adapted to connect to a substrate processing apparatus, the frame having a transport opening through which substrates are transported to the processing apparatus, a cassette support connected to the frame for holding at least one substrate cassette container proximate the transport opening, the support configured so that a sealed internal atmosphere of the container is accessed from the support at predetermined access locations of the container, and the cassette support has a predetermined continuous steady state differential pressure plenum region, determined at least in part by boundaries of fluid flow generating differential pressure, so that the predetermined continuous steady state differential pressure plenum region defines a continuously steady state fluidic flow isolation barrier disposed on the support between the predetermined access locations of the container and another predetermined section of the support isolating the other predetermined section from
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: February 16, 2021
    Assignee: Brooks Automation, Inc.
    Inventors: Radik Sunugatov, Robert Carlson, Mike Krolak
  • Patent number: 10903104
    Abstract: A substrate transport apparatus having a drive section and a scara arm operably connected to the drive section to move the scara arm. The scara arm has an upper arm and at least one forearm. The forearm is movably mounted to the upper arm and capable of holding a substrate thereon. The upper arm is substantially rigid and is adjustable for changing a predetermined dimension of the upper arm.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: January 26, 2021
    Assignee: Brooks Automation, Inc.
    Inventors: Antonio F. Pietrantonio, Anthony Chesna, Hakan Elmali, Ulysses Gilchrist
  • Patent number: 10903107
    Abstract: A semiconductor process transport apparatus including a drive section with at least one motor, an articulated arm coupled to the drive section for driving articulation motion, a machine controller coupled to the drive section to control the at least one motor moving the articulated arm from one location to a different location, and an adapter pendant having a machine controller interface coupling the adapter pendant for input/output with the machine controller, the adapter pendant having another interface, configured for connecting a fungible smart mobile device having predetermined resident user operable device functionality characteristics, wherein the other interface has a connectivity configuration so mating of the fungible smart mobile device with the other interface automatically enables configuration of at least one of the resident user operable device functionality characteristics to define an input/output to the machine controller effecting input commands and output signals for motion control of the
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: January 26, 2021
    Assignee: Brooks Automation, Inc.
    Inventors: Dana L. Atwood, Jairo Moura
  • Patent number: 10879101
    Abstract: A substrate processing apparatus including a frame defining a chamber with a substrate transport opening and a substrate transfer plane defined therein, a valve mounted to the frame and being configured to seal an atmosphere of the chamber when closed, the valve having a door movably disposed to open and close the substrate transport opening, and at least one substrate sensor element disposed on a side of the door and oriented to sense substrates located on the substrate transfer plane.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: December 29, 2020
    Assignee: Brooks Automation, Inc.
    Inventor: Leigh F. Sharrock
  • Patent number: 10875255
    Abstract: A device for sealing sample tubes comprises a tool assembly configured to interface with a rack (10) holding a plurality of sample storage tubes (20), the tool assembly holding a plurality of punches (322) and a die plate (324) including a plurality of cutting holes, with each of the plurality of cutting holes accepting one of the plurality of punches (322). The tool assembly receives a foil sheet (131) between the punches (322) and the die plate (324). The device includes an actuator enabling linear movement of the tool assembly. Linear movement of the tool assembly towards the rack (10) engages the die plate (324) against the rack (10) and punches the punches (322) through the cutting holes of the die plate (324) to punch a plurality of sealing sections from the foil sheet (131) and to press and seal each of the sealing sections against a top end of each of the plurality of sample storage tubes (20) in the rack (10).
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: December 29, 2020
    Assignee: BROOKS AUTOMATION, INC.
    Inventor: Beat Reuteler
  • Patent number: 10854478
    Abstract: A semiconductor processing tool is disclosed, the tool having a frame forming at least one chamber with an opening and having a sealing surface around a periphery of the opening, a door configured to interact with the sealing surface for sealing the opening, the door having sides perpendicular to the door sealing surface and perpendicular to a transfer plane of a substrate, and at least one drive located on the frame to a side of at least one of the sides that are substantially perpendicular to the door sealing surface and substantially perpendicular to the transfer plane of the substrate, the drive having actuators located at least partially in front of the sealing surface and the actuators being coupled to one of the sides of the door for moving the door from a sealed position. The at least one drive is located outside of a substrate transfer zone.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: December 1, 2020
    Assignee: Brooks Automation, Inc.
    Inventors: Christopher Hofmeister, Martin R. Elliott, Alexander Krupyshev, Joseph Hallisey, Joseph A. Kraus, William Fosnight, Craig J. Carbone, Jeffrey C. Blahnik, Ho Yin Owen Fong
  • Patent number: 10843341
    Abstract: A method for health assessment of a system including a transport apparatus including registering predetermined operating data embodying at least one dynamic performance variable output by the transport apparatus, determining a base value (CpkBase) characterized by a probability density function of each of the dynamic performance variable output, resolving from the transport apparatus in situ process motion commands of the apparatus controller and defining another predetermined motion set of the transport apparatus, registering predetermined operating data embodying the at least one dynamic performance variable output by the transport apparatus and determining with the processor another value (CpkOther) characterized by the probability density function of each of the dynamic performance variable output by the transport apparatus, and comparing the other value and the base value (CpkBase) for each of the dynamic performance variable output by the transport apparatus respectively corresponding to the predetermin
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: November 24, 2020
    Assignee: Brooks Automation, Inc.
    Inventors: Aaron Gawlik, Jairo T. Moura
  • Patent number: 10845793
    Abstract: A system for condition monitoring and fault diagnosis includes a data collection function that acquires time histories of selected variables for one or more of the components, a pre-processing function that calculates specified characteristics of the time histories, an analysis function for evaluating the characteristics to produce one or more hypotheses of a condition of the one or more components, and a reasoning function for determining the condition of the one or more components from the one or more hypotheses.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: November 24, 2020
    Assignee: Brooks Automation, Inc.
    Inventors: Martin Hosek, Jay Krishnasamy, Jan Prochazka
  • Patent number: 10834918
    Abstract: A modular sample store including a storage area; a service area; a transfer area; a motorized robot with a lifting device and at least one platform; and a controller. The sample store service area includes one integrally formed cubic vat module and the sample store storage area includes at least one integrally formed cubic vat module. Each one of the aforementioned vat modules includes an essentially horizontal vat floor and four joining vat walls that are connected to the vat floor and that are leaving an open vat space. The modular sample store also includes upper side walls and a cover plate to close the sample store. Each vat floor and vat wall includes an outside liner and an inside liner, which outside and inside liners in each case are separated by a clearance.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: November 17, 2020
    Assignee: Brooks Automation, Inc.
    Inventors: Johann Camenisch, Beat Reuteler, Mirko Hebenstreit, Jurg Tanner, Christian Cachelin
  • Patent number: 10818537
    Abstract: A substrate transport apparatus including a frame, an upper arm rotatably mounted to the frame about a shoulder axis, a forearm rotatably mounted to the upper arm about an elbow axis where the forearm includes stacked forearm sections dependent from the upper arm through a common joint, and independent stacked end effectors rotatably mounted to the forearm, the forearm being common to the independent stacked end effectors, wherein at least one end effector is mounted to the stacked forearm sections at a wrist axis, where the forearm is configured such that spacing between the independent stacked end effectors mounted to the stacked forearm sections is decoupled from a height build up between end effectors accommodating pass through instrumentation.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: October 27, 2020
    Assignee: Brooks Automation, Inc.
    Inventors: Robert T. Caveney, Ulysses Gilchrist
  • Patent number: 10777438
    Abstract: In accordance with one or more aspects of the disclosed embodiment a semiconductor processing apparatus is provided. The semiconductor processing apparatus includes a frame forming a sealable chamber having a longitudinal axis and lateral sides astride the longitudinal axis, the sealable chamber being configured to hold a sealed environment therein, at least one transport module mounted to the sealable chamber and having a telescoping carriage being configured so that the telescoping carriage is linearly movable relative to another portion of the transport module where the telescoping carriage and the other portion define a telescoping motion along the longitudinal axis, and at least one transfer robot mounted to the carriage, each of the at least one transfer robot having at least one transfer arm configured for holding a substrate thereon.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: September 15, 2020
    Assignee: Brooks Automation, Inc.
    Inventors: Robert T. Caveney, Ulysses Gilchrist