Patents Assigned to Brooks Automation
-
Patent number: 10134623Abstract: Substrate processing apparatus including a wafer transport apparatus with a transport arm including an end effector, an arm pose deterministic feature integral to the substrate transport apparatus and disposed so that a static detection sensor of the substrate processing apparatus detects at least one edge of the at least one arm pose deterministic feature on the fly with radial motion of the transport arm, and a controller configured so that detection of the edge effects a determination of a proportion factor identifying at least a thermal expansion variance of the transport arm on the fly and includes a kinematic effects resolver configured to determine, from the detection of the edge on the fly, a discrete relation between the determined proportion factor and each different discrete variance respective to each different link of the transport arm determining at least the thermal expansion variance of the transport arm on the fly.Type: GrantFiled: July 13, 2016Date of Patent: November 20, 2018Assignee: Brooks Automation, Inc.Inventors: Bing Yin, Jairo T. Moura, Vincent Tsang, Aaron Gawlik, Nathan Spiker
-
Patent number: 10120374Abstract: A system for condition monitoring and fault diagnosis includes a data collection function that acquires time histories of selected variables for one or more of the components, a pre-processing function that calculates specified characteristics of the time histories, an analysis function for evaluating the characteristics to produce one or more hypotheses of a condition of the one or more components, and a reasoning function for determining the condition of the one or more components from the one or more hypotheses.Type: GrantFiled: August 10, 2015Date of Patent: November 6, 2018Assignee: Brooks Automation, Inc.Inventors: Martin Hosek, Jay Krishnasamy, Jan Prochazka
-
Patent number: 10113781Abstract: A refrigerant management system controls the supply of refrigerant from two or more variable speed and fixed speed compressors to a plurality of cryogenic refrigerators. The system employs a plurality of sensors to monitor and regulate the overall refrigerant supply to deliver an appropriate refrigerant supply to each of the cryogenic refrigerators. The amount of refrigerant to supply is based on an aggregate demand for refrigerant from the plurality of cryogenic refrigerators and a refrigerant correction metric. An appropriate supply of refrigerant is distributed to each cryogenic refrigerator by adjusting the speed of the variable speed compressors or, alternatively, selectively turning the compressors on or off. The speed of the variable speed compressors is adjusted by determining an amount of refrigerant to supply to the plurality of cryogenic refrigerators.Type: GrantFiled: March 5, 2012Date of Patent: October 30, 2018Assignee: Brooks Automation, Inc.Inventors: Oliver J. Dumas, Maureen C. Buonpane, Doreen J. Ball-DiFazio, Ronald N. Morris, Allen J. Bartlett, Leonard A. Loranger, Joseph Chopy, Jr., Robert P. Sullivan, John J. Varone, Paul E. Amundsen
-
Patent number: 10101352Abstract: An apparatus includes a frame configured to hold sample holders in an array, a longitudinal axis of the sample holder extending outward of an array plane; a drive section connected to the frame; at least one transfer arm rotatably connected to the drive section so that each transfer arm rotates about a rotation axis oriented substantially parallel with the longitudinal axis and includes a sample holder gripper; and at least one push member movably connected to the drive section and being distinct from the sample holder gripper and configured for linear movement along the longitudinal axis, the at least one push member being configured so that engagement with at least a bottom or top surface of the sample holder effects longitudinal translation of the sample holder for one or more of capture and release of the sample holder by the respective transfer arm in the longitudinal direction.Type: GrantFiled: April 25, 2017Date of Patent: October 16, 2018Assignee: Brooks Automation, Inc.Inventors: Mark Borodkin, David Mejia, Werner Willemse, Robert K. Neeper
-
Patent number: 10096500Abstract: The present invention discloses apparatuses and methods for simultaneous viewing and reading top and bottom images from a workpiece. The present ID reader can comprise an enclosure covering a top and bottom section of the workpiece with optical elements to guide the light from the workpiece images to a camera. The optical element can be disposed to receive images from a high angle with respect to the surface of the workpiece. The present ID reader can further comprise a light source assembly to illuminate the image. The light source assembly can utilize a coaxial light path with the images, preferably for bright field illumination. The light source assembly can also utilize a non-coaxial light path, preferably for dark field illumination.Type: GrantFiled: July 25, 2012Date of Patent: October 9, 2018Assignee: Brooks Automation Germany GmbHInventor: David Barker
-
Patent number: 10092929Abstract: A tray engine includes a vertical drive column, a rotation mechanism for rotating the vertical drive column, and an end effector attached to the vertical drive column. The end effector includes an end effector base attached to the vertical drive column. The end effector further includes a slide attached to the end effector base to support a tray, when present. The slide enables the tray to slide along a length of the end effector base. The tray engine includes a drive mechanism attached to the end effector base for moving along the length of the end effector base to enable the tray, when present, to slide linearly along the length and load or unload the tray to or from the slide.Type: GrantFiled: December 21, 2016Date of Patent: October 9, 2018Assignee: Brooks Automation, Inc.Inventors: Anthony C. Bonora, Brian Compian, Jeff P. Henderson, Robert W. Carlson
-
Patent number: 10096461Abstract: An EUV cleaner system and process for cleaning a EUV carrier. The EUV cleaner system comprises separate dirty and cleaned environments, separate cleaning chambers for different components of the double container carrier, gripper arms for picking and placing different components using a same robot handler, gripper arms for holding different components at different locations, horizontal spin cleaning and drying for outer container, hot water and hot air (70 C) cleaning process, vertical nozzles and rasterizing megasonic nozzles for cleaning inner container with hot air nozzles for drying, separate vacuum decontamination chambers for outgassing different components, for example, one for inner and one for outer container with high vacuum (e.g., <10?6 Torr) with purge gas, heaters and RGA sensors inside the vacuum chamber, purge gas assembling station, and purge gas loading and unloading station.Type: GrantFiled: June 23, 2012Date of Patent: October 9, 2018Assignee: Brooks Automation Germany, GmbHInventor: Lutz Rebstock
-
Patent number: 10090179Abstract: In an embodiment, the present invention discloses cleaned storage processes and systems for high level cleanliness articles, such as extreme ultraviolet (EUV) reticle carriers. A decontamination chamber can be used to clean the stored workpieces. A purge gas system can be used to prevent contamination of the articles stored within the workpieces. A robot can be used to detect the condition of the storage compartment before delivering the workpiece. A monitor device can be used to monitor the conditions of the stocker.Type: GrantFiled: June 28, 2012Date of Patent: October 2, 2018Assignee: Brooks Automation, Inc.Inventor: Lutz Rebstock
-
Patent number: 10086511Abstract: Linear semiconductor handling systems provide more balanced processing capacity using various techniques to provide increased processing capacity to relatively slow processes. This may include use of hexagonal vacuum chambers to provide additional facets for slow process modules, use of circulating process modules to provide more processing capacity at a single facet of a vacuum chamber, or the use of wide process modules having multiple processing sites. This approach may be used, for example, to balance processing capacity in a typical process that includes plasma enhanced chemical vapor deposition steps and bevel etch steps.Type: GrantFiled: August 30, 2013Date of Patent: October 2, 2018Assignee: Brooks Automation, Inc.Inventor: Peter van der Meulen
-
Patent number: 10065222Abstract: Provided are methods and systems for cleaning various semiconductor substrate storage articles, in particular, FOUP doors. The FOUP doors and other similar articles often have openings that may get contaminated with cleaning liquids if not covered. The described cleaning system includes contact points for engaging the article and covering these openings. The contact points may be also used for supporting the article and for pressurizing the openings in the article with a gas. The gas may be supplied through one or more contact points. It prevents liquids from getting into the openings if even the openings are not completely sealed. The pressurization may be maintained through the entire wet portion of the cleaning process. The article may be rotated within the cleaning system while cleaning and/or other liquids or gases are dispensed through a set of spraying nozzles. Spraying nozzles may move to enhance cleaning of the article.Type: GrantFiled: October 20, 2014Date of Patent: September 4, 2018Assignee: Brooks Automation (Germany) GmbHInventor: Lutz Rebstock
-
Patent number: 10065307Abstract: A substrate transport apparatus having a frame, a drive section and an articulated arm. The drive section has at least one motor module that is selectable for placement in the drive section from a number of different interchangeable motor modules. Each having a different predetermined characteristic. The articulated arm has articulated joints. The arm is connected to the drive section for articulation. The arm has a selectable configuration selectable from a number of different arm configurations each having a predetermined configuration characteristic. The selection of the arm configuration is effected by selection of the at least one motor module for placement in the drive section.Type: GrantFiled: November 4, 2013Date of Patent: September 4, 2018Assignee: Brooks Automation Inc.Inventors: Ulysses Gilchrist, Christopher Hofmeister
-
Patent number: 10058998Abstract: A time-optimal trajectory generation method, for a robotic manipulator haying a transport path with at least one path segment, comprising generating a forward time-optimal trajectory of the manipulator along the at least one path segment from a start point of the at least one path segment towards an end point of the at least one path segment, generating a reverse time-optimal trajectory of the manipulator along the at least one path segment from the end point towards the start point of the at least one path segment, and combining the time-optimal forward and reverse trajectories to obtain a complete time optimal trajectory, where the forward and reverse trajectories of the at least one path segment are blended together with a smoothing bridge joining the time-optimal forward and reverse trajectories in a position-velocity reference frame with substantially no discontinuity between the time-optimal forward and reverse trajectories.Type: GrantFiled: December 12, 2016Date of Patent: August 28, 2018Assignee: Brooks Automation, Inc.Inventors: Jayaraman Krishnasamy, Martin Hosek
-
Patent number: 10043651Abstract: In an embodiment, the present invention discloses a EUV cleaner system and process for cleaning a EUV carrier. The euv cleaner system comprises separate dirty and cleaned environments, separate cleaning chambers for different components of the double container carrier, gripper arms for picking and placing different components using a same robot handler, gripper arms for holding different components at different locations, horizontal spin cleaning and drying for outer container, hot water and hot air (70 C) cleaning process, vertical nozzles and rasterizing megasonic nozzles for cleaning inner container with hot air nozzles for drying, separate vacuum decontamination chambers for outgassing different components, for example, one for inner and one for outer container with high vacuum (e.g., <10?6 Torr) with purge gas, heaters and RGA sensors inside the vacuum chamber, purge gas assembling station, and purge gas loading and unloading station.Type: GrantFiled: June 23, 2012Date of Patent: August 7, 2018Assignee: Brooks Automation (Germany) GmbHInventor: Lutz Rebstock
-
Patent number: 10029363Abstract: A robot assembly for transporting a substrate is presented. The robot assembly having a first arm and a second arm supported by a column, the first arm further having a first limb, the first limb having a first set of revolute joint/line pairs configured to provide translation and rotation of the distal most link of the first limb in the horizontal plane. The assembly further having a second arm further having a second limb, the second limb comprising a second set of revolute joint/link pairs configured to provide translation and rotation of a distalmost link of the second limb in the horizontal plane. The first limb and second limb further having proximal revolute joints having a common vertical axis of rotation and a proximal inner joint housed in a common housing.Type: GrantFiled: February 9, 2015Date of Patent: July 24, 2018Assignee: Brooks Automation, Inc.Inventor: Izya Kremerman
-
Patent number: 10026604Abstract: In an embodiment, the present invention discloses a EUV cleaner system and process for cleaning a EUV carrier. The euv cleaner system comprises separate dirty and cleaned environments, separate cleaning chambers for different components of the double container carrier, gripper arms for picking and placing different components using a same robot handler, gripper arms for holding different components at different locations, horizontal spin cleaning and drying for outer container, hot water and hot air (70 C) cleaning process, vertical nozzles and rasterizing megasonic nozzles for cleaning inner container with hot air nozzles for drying, separate vacuum decontamination chambers for outgassing different components, for example, one for inner and one for outer container with high vacuum (e.g., <10?6 Torr) with purge gas, heaters and RGA sensors inside the vacuum chamber, purge gas assembling station, and purge gas loading and unloading station.Type: GrantFiled: July 25, 2016Date of Patent: July 17, 2018Assignee: Brooks Automation (Germany) GmbHInventor: Lutz Rebstock
-
Patent number: 10002781Abstract: A substrate transport apparatus auto-teach system for auto-teaching a substrate station location, the system including a frame, a substrate transport connected to the frame, the substrate transport having an end effector configured to support a substrate, and a controller configured to move the substrate transport so that the substrate transport biases the substrate supported on the end effector against a substrate station feature causing a change in eccentricity between the substrate and the end effector, determine the change in eccentricity, and determine the substrate station location based on at least the change in eccentricity between the substrate and the end effector.Type: GrantFiled: November 10, 2015Date of Patent: June 19, 2018Assignee: Brooks Automation, Inc.Inventors: Jairo T. Moura, Aaron Gawlik, Reza Saeidpourazar
-
Patent number: 9978623Abstract: A substrate processing system including a processing section arranged to hold a processing atmosphere therein, a carrier having a shell forming an internal volume for holding at least one substrate for transport to the processing section, the shell being configured to allow the internal volume to be pumped down to a predetermined vacuum pressure that is different than an exterior atmosphere outside the substrate processing system, and a load port communicably connected to the processing section to isolate the processing atmosphere from the exterior atmosphere, the load port being configured to couple with the carrier to pump down the internal volume of the carrier and to communicably connect the carrier to the processing section, for loading the substrate into the processing section through the load port.Type: GrantFiled: August 10, 2015Date of Patent: May 22, 2018Assignee: Brooks Automation, Inc.Inventors: Daniel Babbs, William Fosnight, Robert C. May, William Weaver
-
Patent number: 9970427Abstract: A system and method is provided to control a purge valve during an unsafe condition associated with a cryopump. An electronic controller may be used to control the opening and closing of one or more purge valves during the unsafe condition. The purge valve can be a cryo-purge valve or exhaust purge valve. The purge valve can be a normally open valve. The electronic controller can release the normally open valve in response to the unsafe condition. The electronic controller can delay its response to the unsafe condition for a safe period of time. Attempts from other systems to control these valves during unsafe conditions can be preempted during unsafe conditions. A user can be inhibited from manually controlling the purge valve during unsafe conditions. A power failure recovery routine may be initiated in response to a restoration of power. The power failure recovery routine can respond to an unsafe condition even if the power failure recovery routine has been manually turned off by a user.Type: GrantFiled: July 22, 2008Date of Patent: May 15, 2018Assignee: Brooks Automation, Inc.Inventors: Paul E. Amundsen, Maureen C. Buonpane, Douglas Andrews, Jordan Jacobs
-
Patent number: 9947565Abstract: An improved stocker configuration for storing workpieces in a fabrication facility is disclosed, employing workpiece compartments arranged stationarily around a robot handling assembly. The robot handler can be designed with three degrees of freedom, to improve speed, throughput and minimum particle generation. In addition, the stocker storage area is stationary with the movable components are the robot assembly, thus further contributing to the cleanliness of the storage stocker. The stocker configuration can be open storage area for fast access, space saving and ease of clean air purging. The stocker configuration can provide highly dense workpiece storage, utilizing a circumferential edge gripper robot handling assembly.Type: GrantFiled: January 14, 2011Date of Patent: April 17, 2018Assignee: Brooks Automation, Inc.Inventor: Lutz Rebstock
-
Patent number: 9943969Abstract: A robot with improved cleanliness for use in a clean environment is disclosed, having a uniform flow through the open interface between the clean environment and the interior of the robot housing, passing the particle generation area to an exhaust port, keeping the particles from the clean environment. The uniform flow reduces or eliminates the back flow, and further allows the scalability of the open interface to prevent particles generated from moving mechanisms within the robot housing to contaminate the clean environment. The uniform flow can be established by designing the flow dynamic, centering the exhaust port, or by restricting the flow along the elongated slot, for example, by uniformly restricting the flow along the elongated slot, or by implementing a restrictor along the elongated slot.Type: GrantFiled: June 22, 2014Date of Patent: April 17, 2018Assignee: Brooks Automation (Germany) GmbHInventors: David Barker, Robert T. Lobianco, Bhavesh Amin