Patents Assigned to California Institute of Technology
  • Patent number: 11028491
    Abstract: An electrolysis electrode includes a metal-doped array of nanotubes formed on a substrate. The nanotube array (NTA) may be a stabilized metal-doped black TiO2 NTA formed on a titanium substrate, and the metal dopant may include any suitable metal, for example, cobalt. The metal dopant improves the reactivity of the electrode and enhances its service life. The metal-doped NTA electrode may provide improved chlorine evolution and/or oxygen evolution activity for electrochemical wastewater treatment. The electrode may also be useful for water splitting applications. Increasing the loading of the metal dopant may lead to the formation of a metal oxide layer on top of the NTA, which improves oxygen evolution reaction (OER) overpotential.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: June 8, 2021
    Assignee: California Institute of Technology
    Inventors: Michael R. Hoffmann, Yang Yang
  • Patent number: 11029287
    Abstract: A probe for use with an imaging system, including a scanning device configured to receive a first light beam from a light source, a beam-divider configured to split the first light beam into a plurality of second light beams, and a focusing device configured to focus each of the second light beams on respective locations in an object of interest is disclosed.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: June 8, 2021
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Lihong Wang, Liang Song, Konstantin Maslov, Bin Rao
  • Patent number: 11028107
    Abstract: The present invention is directed to compositions for silylating organic substrates containing C—H or O—H bonds, especially heteroaromatic substrates. The compositions are derived from the preconditioning of mixtures of hydrosilanes or organodisilanes with bases, including metal hydroxide and metal alkoxide bases. In some embodiments, the preconditioning results in the formation of reactive silicon hydride species.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: June 8, 2021
    Assignee: California Institute of Technology
    Inventors: Anton Toutov, Wenbo Liu, David P. Schuman, Brian M. Stoltz, Robert H. Grubbs
  • Patent number: 11026610
    Abstract: A sensor implanted in tissues and including a sensing layer is fabricated by mixing the signal transduction enzyme with non-reactive components including buffer salts and fillers, and spin coating the enzyme onto a substrate. The signal transduction enzyme is crosslinked by introducing the coated substrate in a vacuum chamber. In the chamber, a crosslinker evaporates and is deposited onto the enzyme, therefore crosslinking the enzyme.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: June 8, 2021
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Samson Chen, Axel Scherer, Dvin Adalian, Peter Petillo, Muhammad Musab Jilani, Xiomara L. Madero, Deepan Kishore Kumar
  • Publication number: 20210165300
    Abstract: A coherent, entangled photon source which uses a continuous wave laser to replace pulsed photon excitation sources in multiphoton nonlinear processes. In various embodiments, the device comprises a continuous wave photon laser creating electromagnetic radiation at a specific frequency and narrow linewidth. The emitted beam may be conditioned by an optical fiber to allow for efficient interaction with a nonlinear crystal. The nonlinear material is designed and fabricated in a specific manner, enabling the quantum mechanical process of a single photon with well-defined energy being converted into two or more photons which display quantum correlations. The nonlinear material and subsequent fiber-optic or free space components control the temporal, spatial, and polarization-related quantum correlations such that the entangled photons can create a signal in multiphoton nonlinear processes that is the same or exceeds that of a pulsed photon source but at the average and peak powers of a continuous wave laser.
    Type: Application
    Filed: December 3, 2020
    Publication date: June 3, 2021
    Applicant: California Institute of Technology
    Inventors: Scott K. Cushing, Szilard Szoke, Manni He, Bryce P. Hickam
  • Patent number: 11020006
    Abstract: Systems and methods of reconstructing photoacoustic imaging data corresponding to a brain of a subject through a skull of a subject utilizing a reconstruction method that incorporates a spatial model of one or more acoustic properties of the brain and skull of the subject derived from an adjunct imaging dataset.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: June 1, 2021
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Lihong V. Wang, Liming Nie, Xin Cai, Konstantin Maslov, Mark A. Anastasio, Chao Huang, Robert W. Schoonover
  • Patent number: 11021223
    Abstract: Various embodiments are directed to interconnectable tiles configured for operation in an aquatic environment or a near-zero/zero gravity environment. The interconnectable tiles are configured to interconnect relative to one another to form interconnected surfaces, and individual interconnectable tiles provide thrust, ballast, and/or buoyancy to the overall interconnected surface so as to move the interconnected surface in a desired configuration.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: June 1, 2021
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Austin C. Fikes, Seyed Ali Hajimiri
  • Publication number: 20210153798
    Abstract: A method includes providing a first electrode and a second electrode, receiving a first plurality of signals from the first electrode during a first period of time, and receiving a second plurality of signals from the second electrode during a second period of time. The method also includes receiving a pooled signal comprising a third plurality of signals from the first electrode and a fourth plurality of signals from the second electrode and isolating, from the pooled signal, one or more of the third plurality of signals and one or more of the fourth plurality of signals.
    Type: Application
    Filed: November 25, 2020
    Publication date: May 27, 2021
    Applicant: California Institute of Technology
    Inventors: Markus Meister, Kyu Hyun Lee, Yu-Li Ni
  • Publication number: 20210156671
    Abstract: A 3-D imaging system including a computer determining a plurality of coherence factors measuring an intensity contrast between a first intensity of a first region of an interference comprising constructive interference between a sample wavefront and a reference wavefront, and a second intensity of a second region of the interference comprising destructive interference between the sample wavefront and the reference wavefront, wherein the interference between a reference wavefront and a reflection from different locations on a surface of an object. From the coherence factors, the computer determines height data comprising heights of the surface with respect to an x-y plane perpendicular to the heights and as a function of the locations in the x-y plane. The height data is useful for generating a three dimensional topological image of the surface.
    Type: Application
    Filed: November 23, 2020
    Publication date: May 27, 2021
    Applicant: California Institute of Technology
    Inventors: Jian Xu, Changhuei Yang
  • Patent number: 11014162
    Abstract: Ti-based metal matrix composites, methods of their additive manufacture, and parts manufactured therefrom and thereby are provided. Method include layer-by-layer additive manufacturing for fabricating Ti-based metal matrix composite parts thicker than 0.5 mm, in layers with thickness between 10-1000 micrometers. The parts formed may have one or more of the following properties: a tensile strength greater than 1 GPa, a fracture toughness greater than 40 MPa m1/2, a yield strength divided by the density greater than 200 MPa cm3/g, and a total strain to failure in a tension test greater than 5%.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: May 25, 2021
    Assignee: California Institute of Technology
    Inventor: Douglas C. Hofmann
  • Patent number: 11017143
    Abstract: The disclosure describes a method for modeling excess base current in irradiated bipolar junction transistors (BJTs). The method includes quantifying defect-related electrostatic effects of a BJT device to help improve accuracy in predicting an irradiated excess base current of the BJT device. The method can be adapted to model the excess base current of a lateral P-type-N-type-P-type (LPNP) BJT device in depleted and/or accumulated surface potential states. The predicted excess base current may be used to qualify or disqualify the BJT device or an electrical circuit including the BJT device for use in a space system(s) as a commercial-off-the-shelf (COTS) component. By modeling the excess base current based on quantifying and utilizing the defect-related electrostatic effects, it may be possible to accurately predict a total-ionizing-dose (TID) response of the BJT device, thus enabling faster and lower-cost qualification of a COTS component(s) for use in the space system(s).
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: May 25, 2021
    Assignees: Arizona Board of Regents on Behalf of Arizona State University, California Institute of Technology
    Inventors: Hugh James Barnaby, Philippe Adell, Blayne Tolleson
  • Publication number: 20210151844
    Abstract: A shielded bridge for a coplanar waveguide (CPW) includes a signal bridge extending from a first terminal of the CPW to a second terminal of the CPW. The signal bridge has a raised central portion that extends over a separate signal conductor. The shielded bridge for the CPW also includes a ground bridge extending from a first ground plane on a first side of the separate signal conductor to a second ground plane on a second side of the separate signal conductor. The ground bridge is positioned between the signal bridge and the separate signal conductor.
    Type: Application
    Filed: December 18, 2020
    Publication date: May 20, 2021
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Oskar Painter, Seyed Mohammad Mirhosseini Niri, Eun Jong Kim, Alp Sipahigil, Vinicius Thaddeu dos Santos Ferreira, Andrew J. Keller, Mahmoud Kalaee, Michael T. Fang
  • Patent number: 11008596
    Abstract: The present invention provides methods for catalyzing the conversion of an olefin to any compound containing one or more cyclopropane functional groups using heme enzymes. In certain aspects, the present invention provides a method for producing a cyclopropanation product comprising providing an olefinic substrate, a diazo reagent, and a heme enzyme; and admixing the components in a reaction for a time sufficient to produce a cyclopropanation product. In other aspects, the present invention provides heme enzymes including variants and fragments thereof that are capable of carrying out in vivo and in vitro olefin cyclopropanation reactions. Expression vectors and host cells expressing the heme enzymes are also provided by the present invention.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: May 18, 2021
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Pedro S. Coelho, Eric M. Brustad, Frances H. Arnold, Zhan Wang, Jared C. Lewis
  • Patent number: 11009658
    Abstract: Light detectors that combine field emission with light focusing by surface plasmon polaritons. Methods and devices that allow detection and measurement of light at high frequencies in the THz range are described. The disclosed devices include plasmonic metal contacts with a narrow nanometer-sized gap to couple an optical waveguide mode into a plasmonic mode thereby generating filed emission currents by biasing the contacts.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: May 18, 2021
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: William M. Jones, Lucia B. De Rose, Axel Scherer
  • Patent number: 11007245
    Abstract: The present application provides stable peptide-based Botulinum neurotoxin (BoNT) serotype A capture agents and methods of use as detection and diagnosis agents and in the treatment of diseases and disorders. The application further provides methods of manufacturing BoNT serotype A capture agents using iterative on-bead in situ click chemistry.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: May 18, 2021
    Assignees: INDI MOLECULAR, INC., CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Blake Farrow, James R. Heath, Heather Dawn Agnew
  • Publication number: 20210139315
    Abstract: Embodiments described herein include systems and techniques for converting (i.e., transducing) a quantum-level (e.g., single photon) signal between the three wave forms (i.e., optical, acoustic, and microwave). A suspended crystalline structure is used at the nanometer scale to accomplish the desired behavior of the system as described in detail herein. Transducers that use a common acoustic intermediary transform optical signals to acoustic signals and vice versa as well as microwave signals to acoustic signals and vice versa. Other embodiments described herein include systems and techniques for storing a qubit in phonon memory having an extended coherence time. A suspended crystalline structure with specific geometric design is used at the nanometer scale to accomplish the desired behavior of the system.
    Type: Application
    Filed: November 2, 2020
    Publication date: May 13, 2021
    Applicant: California Institute of Technology
    Inventors: Oskar Painter, Jie Luo, Michael T. Fang, Alp Sipahigil, Paul B. Dieterle, Mahmoud Kalaee, Johannes M. Fink, Andrew J. Keller, Gregory MacCabe, Hengjiang Ren, Justin D. Cohen
  • Publication number: 20210141285
    Abstract: An OPO including a resonator comprising a material having a nonlinear susceptibility generating an output electromagnetic field in response to a pump electromagnetic field inputted into the material. The output electromagnetic field has one or more output wavelengths longer than one or more pump wavelengths of the pump electromagnetic field. The resonator has dimensions less than, or on the order of, the one or more output wavelengths in free space.
    Type: Application
    Filed: November 9, 2020
    Publication date: May 13, 2021
    Applicant: California Institute of Technology
    Inventors: Alireza Marandi, Saman Jahani
  • Patent number: 11004536
    Abstract: Provided herein are methods and arrangements and related cell-free biomolecular breadboards configured to design, build, implement, debug, and/or test a genetic circuit to be operated in a target environment, by testing in a cell-free system under conditions of the target environment, molecular components of the genetic circuit and/or combinations thereof to select the molecular components and/or combinations thereof of a genetic circuit operative in the target environment.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: May 11, 2021
    Assignee: California Institute of Technology
    Inventors: Zachary Z. Sun, Richard M. Murray, Vipul Singhal
  • Patent number: 11002908
    Abstract: Methods for fabricating flexible substrate nanostructured devices are disclosed. The nanostructures comprise nano-pillars and metallic bulbs or nano-apertures. The nanostructures can be functionalized to detect biological entities. The flexible substrates can be rolled into cylindrical tubes for detection of fluidic samples.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: May 11, 2021
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Chieh-feng Chang, Sameer Walavalkar, Scott E. Fraser, Axel Scherer
  • Patent number: 11001606
    Abstract: Compositions and methods of the present disclosure provide for staged assembly of nucleic acid microstructures made of an array of x number of polynucleotide tiles, where each of the polynucleotide tiles is a polygon configuration and is made from a single-stranded helical polynucleotide scaffold and a plurality of single-stranded polynucleotide staple strands of y number of unique staple sequences corresponding to the selected tile configuration, the y number of unique staple sequences capable of being constant for any value of x.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: May 11, 2021
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Grigory Tikhomirov, Philip F. Petersen, Lulu Qian