Patents Assigned to Cardioinsight Technology, Inc.
  • Patent number: 11880955
    Abstract: A map generator can be programmed to generate a multi-parameter graphical map by encoding at least two different physiological parameters for a geometric surface, corresponding to tissue of a patient, using different color components of a multi-dimensional color model such that each of the different physiological parameters is encoded by at least one of the different color components.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: January 23, 2024
    Assignee: CARDIOINSIGHT TECHNOLOGIES INC.
    Inventors: Qingguo Zeng, Charulatha Ramanathan, Venkatesh Vasudevan, Rémi Dubois, Ping Jia
  • Patent number: 11832927
    Abstract: A method includes placing a set of electrodes on a body surface of a patient's body. The method also includes digitizing locations for the electrodes across the body surface based on one or more image frames using range imaging and/or monoscopic imaging. The method also includes estimating locations for hidden ones of the electrodes on the body surface not visible during the range imaging and/or monoscopic imaging. The method also includes registering the location for the electrodes on the body surface with predetermined geometry information that includes the body surface and an anatomical envelope within the patient's body. The method also includes storing geometry data in non-transitory memory based on the registration to define spatial relationships between the electrodes and the anatomical envelope.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: December 5, 2023
    Assignee: CARDIOINSIGHT TECHNOLOGIES INC.
    Inventors: Glenn D. Raudins, Qingguo Zeng, Charulatha Ramanathan, Ryan M. Bokan
  • Patent number: 11826148
    Abstract: Systems and methods are disclosed to determine one or more sensing zones on a body surface for electrocardiographic mapping of a region of interest associated with the heart. The sensing zone can be utilized to facilitate acquisition, processing and mapping of electrical activity for the corresponding region of interest. In other examples, an application-specific arrangement of electrodes can also be provided based on the sensing zone that is determined for the region of interest.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: November 28, 2023
    Assignee: CARDIOINSIGHT TECHNOLOGIES INC.
    Inventors: Ping Jia, Charulatha Ramanathan, Maria Strom, Brian P. George, Lalita Bhetwal, Harold Wodlinger, Jonathan D. Small
  • Patent number: 11691018
    Abstract: An example method includes establishing a communications link between an electrophysiology (EP) monitoring system and an implantable medical device (IMD). IMD electrical data is received at the monitoring system via the communications link. The IMD electrical data may be synchronized with EP measurement data to provide synchronized electrical data based on timing of a synchronization signal sensed by an IMD electrode and/or EP electrodes. The method also includes computing reconstructed electrical signals for locations on a surface of interest within the patient's body based on the synchronized electrical data and geometry data. The geometry data represents locations of the EP electrodes, a location of the IMD electrode within the patient's body and the surface of interest.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: July 4, 2023
    Assignee: CARDIOINSIGHT TECHNOLOGIES INC.
    Inventors: William Rowland, Timothy G. Laske, Qing Lou, Qingguo Zeng
  • Patent number: 11666242
    Abstract: An example method includes applying a localization signal to a source electrode positioned within a conductive volume and a ground electrode at a known location. Electrical activity is sensed at a plurality of sensor electrodes distributed across an outer surface of the conductive volume. The locations of each of the sensor electrodes and the location of the ground electrode being stored in memory as part of geometry data. The electrical activity sensed at each of the sensor electrodes is stored in the memory as electrical measurement data. The method also includes computing a location of the source electrode by minimizing a difference between respective pairs of source voltages determined for the plurality of sensor electrodes. The source voltage for each of the sensor electrodes is determined based on the electrical measurement data and the geometry data.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: June 6, 2023
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Ping Jia, Qingguo Zeng, Charulatha Ramanathan, Ryan Bokan
  • Patent number: 11576604
    Abstract: Systems and methods can be used to provide an indication of heart function, such as an indication of mechanical function or hemodynamics of the heart, based on electrical data. For example, a method for assessing a function of the heart can include determining a time-based electrical characteristic for a plurality of points distributed across a spatial region of the heart. The plurality of points can be grouped into at least two subsets of points based on at least one of a spatial location for the plurality of points or the time-based electrical characteristics for the plurality of points. An indication of synchrony for the heart can be quantified based on relative analysis of the determined time-based electrical characteristic for each of the at least two subsets of points.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: February 14, 2023
    Assignee: CARDIOINSIGHT TECHNOLOGIES INC.
    Inventors: Charulatha Ramanathan, Harold Wodlinger, Maria Strom, Steven G. Arless, Ping Jia
  • Patent number: 11504046
    Abstract: Systems and methods for graph total variation (GTV) based reconstruction of electrical potentials on a cardiac surface are disclosed. GTV-based systems and methods incorporate information about the graph structure of the heart surface as well as imposing sparsity constraints on neighboring nodes. To this end, the present disclosure uses a novel way of calculating derivatives on irregular meshes, and provides a fast solver to compute an inverse solution more efficiently than in previous systems and methods. Moreover, fast-changing signals can be recovered with less smoothing and thus greater fidelity to the original signals.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: November 22, 2022
    Assignees: CARDIOINSIGHT TECHNOLOGIES, INC., CASE WESTERN RESERVE UNIVERSITY
    Inventors: Qingguo Zeng, Richard N. Lartey, Weihong Guo
  • Patent number: 11324433
    Abstract: A method can include storing input electrical signal data representing at least a given electrophysiological signal acquired from a patient. A non-local mean filter can be applied to the given electrophysiological signal, the non-local mean filter including a spatial filter component and an intensity filter component. The method can also include controlling parameters to establish weighting of each of the spatial filter component and the intensity filter component in response to a control input. Filtered signal data can be stored based on the applying and the controlling.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: May 10, 2022
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Qingguo Zeng, Venkatesh Vasudevan, Charulatha Ramanathan, Ping Jia
  • Patent number: 11284830
    Abstract: An example method includes analyzing morphology and/or amplitude of each of a plurality of electrophysiological signals across a surface of a patient's body to identify candidate segments of each signal satisfying predetermined conduction pattern criteria. The method also includes determining a conduction timing parameter for each candidate segment in each of the electrophysiological signals.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: March 29, 2022
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Qing Lou, Meredith E. Stone, Qingguo Zeng, Jeffrey B. Adair, Connor S. Edel, Ping Jia, Kevin R. Ponziani, Brian P. George, Ryan M. Bokan, Matthew J. Sabo, Vladimir A. Turovskiy, Ketal C. Patel, Charulatha Ramanathan
  • Patent number: 11229392
    Abstract: Systems and methods for cardiac fast firing (e.g., atrial fast firing) detection perform frequency analysis on channels of collected cardiac waveform data and test the data for outlier frequency complex content that is of higher frequency than baseline frequency complex content associated with cardiac fibrillation (e.g., atrial fibrillation) or other arrhythmogenic activity. Anatomical regions from whence the cardiac fast firing originates can be displayed in real time on an epicardial surface map via a graphical display, aiding administration of therapy. Prior to such detection, QRST complex removal can be performed to ensure that ventricular activity does not infect the atrial fast firing analysis. A frequency-based method for QRST complex removal is also disclosed.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: January 25, 2022
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Ping Jia, Qingguo Zeng, Timothy G. Laske, Qing Lou
  • Patent number: 11224374
    Abstract: Systems and methods are disclosed to determine one or more sensing zones on a body surface for electrocardiographic mapping of a region of interest associated with the heart. The sensing zone can be utilized to facilitate acquisition, processing and mapping of electrical activity for the corresponding region of interest. In other examples, an application-specific arrangement of electrodes can also be provided based on the sensing zone that is determined for the region of interest.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: January 18, 2022
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Ping Jia, Charulatha Ramanathan, Maria Strom, Brian P. George, Lalita Bhetwal, Harold Wodlinger, Jonathan D. Small
  • Patent number: 11182911
    Abstract: Systems and methods can be used for ultrasound-based geometry determination for cardiac mapping. A patient can be scanned with an ultrasound while wearing body surface electrodes. While the scanning takes place, the location of the ultrasound transducer can be tracked in three-dimensional space. The electrodes can be tracked and located in the same coordinate system as the image volume. Therefore, each electrode's location can be determined relative to the acquired image volume such that corresponding geometry data is generated for the heart and the electrodes.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: November 23, 2021
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventor: Glenn D. Raudins
  • Patent number: 11179054
    Abstract: A method includes placing a set of electrodes on a body surface of a patient's body. The method also includes digitizing locations for the electrodes across the body surface based on one or more image frames using range imaging and/or monoscopic imaging. The method also includes estimating locations for hidden ones of the electrodes on the body surface not visible during the range imaging and/or monoscopic imaging. The method also includes registering the location for the electrodes on the body surface with predetermined geometry information that includes the body surface and an anatomical envelope within the patient's body. The method also includes storing geometry data in non-transitory memory based on the registration to define spatial relationships between the electrodes and the anatomical envelope.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: November 23, 2021
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Glenn D. Raudins, Qingguo Zeng, Charulatha Ramanathan, Ryan M. Bokan
  • Patent number: 11138792
    Abstract: In an example, an n-dimensional method of fundamental solution (MFS) is used to compute reconstructed electrical activity on a cardiac envelope based on geometry data and electrical data, where n is a positive integer greater than three. The electrical data represents electrical activity measured non-invasively from a plurality of locations distributed on a body surface of a patient, and the geometry data represents three-dimensional body surface geometry for the locations distributed on the body surface where the electrical activity is measured and three-dimensional heart geometry for the cardiac envelope.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: October 5, 2021
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Yong Wang, Qingguo Zeng, Ping Jia, Qing Lou
  • Patent number: 11131536
    Abstract: This disclosure relates to localization and tracking of an object. As one example, measurement data can be stored in memory to represent measured electrical signals at each of a plurality of known measurement locations in a given coordinate system in response to an applied signal at an unknown location in the given coordinate system. A dipole model cost function has parameters representing a dipole location and moment corresponding to the applied signal. A boundary condition can be imposed on the dipole model cost function. The unknown location in the given coordinate system, corresponding to the dipole location, can then be determined based on the stored measurement data and the dipole model cost function with the boundary condition imposed thereon.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: September 28, 2021
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Qingguo Zeng, Ping Jia, Charulatha Ramanathan, Lijun Yu, Jeff Burrell, Brian George, Qing Lou, Ryan Bokan, Soniya Bhojwani
  • Patent number: 11039776
    Abstract: This disclosure provides one or more computer-readable media having computer-executable instructions for performing a method. The method includes storing geometry data representing a primary geometry of a cardiac envelope that includes nodes distributed across the cardiac envelope and geometry of a body surface that includes locations where electrical signals are measured. The body surface is spaced apart from the cardiac envelope. The method also includes perturbing the primary geometry of the cardiac envelope a given distance and direction to define the perturbed geometry of the cardiac envelope including nodes spaced from the nodes of the primary geometry. The method also includes computing reconstructed bipolar electrical signals on the nodes of the primary cardiac envelope based on the electrical signals measured from the body surface and the geometry data, including the primary and perturbed geometries of the cardiac envelope.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: June 22, 2021
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Yong Wang, Qing Lou, Qingguo Zeng, Ping Jia
  • Patent number: 10959638
    Abstract: Systems and methods can be used to determine conduction velocity and generate one or more conduction velocity and/or pattern maps to facilitate identification of arrhythmogenic mechanisms.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: March 30, 2021
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Rémi Dubois, Corentin Dallet
  • Patent number: 10874318
    Abstract: This disclosure relates to integrated channel integrity detection and to reconstruction of electrophysiological signals. An example system includes a plurality of input channels configured to receive respective electrical signals from a set of electrodes. An amplifier stage includes a plurality of differential amplifiers, each of the differential amplifiers being configured to provide an amplifier output signal based on a difference between a respective pair of the electrical signals. Channel detection logic is configured to provide channel data indicating an acceptability of each of the plurality of input channels based on an analysis of a common mode rejection of the amplifier output signals.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: December 29, 2020
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Shahabedin Shahdoostfard, Qingguo Zeng, Ping Jia, Brian P. George, Kevin Ponziani, Qing Lou, Daniel Varghai, Jeffrey B. Adair
  • Patent number: 10806359
    Abstract: One or more non-transitory computer-readable media have instructions executable by a processor and programmed to perform a method. The method includes analyzing the electrical data to locate one or more wave front lines over a given time interval. The electrical data represents electrophysiological signals distributed across a cardiac envelope for one or more time intervals. A respective trajectory is determined for each wave end of each wave front line that is located across the cardiac envelope over the given time interval. A set of connected trajectories are identified based on a duration that the trajectories are connected to each other by a respective wave front line during the given time interval. A connectivity association is characterized for the trajectories in the set of connected trajectories.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: October 20, 2020
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Qingguo Zeng, Qing Lou, Ryan M. Bokan, Ping Jia, Connor S. Edel, Charulatha Ramanathan
  • Patent number: 10729345
    Abstract: For example, one or more non-transitory computer-readable media includes executable instructions to perform a method. The method includes defining a plurality of spatial regions distributed across a geometric surface. At least one wave front that propagates across the geometric surface is detected based on electrical data representing electrophysiological signals for each of a plurality of nodes distributed on the geometric surface over at least one time interval. An indication of conduction velocity of the wave front is determined for at least one spatial region of the plurality of spatial regions during the time interval based on a duration that the wave front resides within the at least one spatial region. Slow conduction activity is identified for the at least one spatial region based on comparing the indication of conduction velocity relative to a threshold. Conduction data is stored in memory to represent each slow conduction event.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: August 4, 2020
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Qing Lou, Jeffrey B. Adair, Qingguo Zeng, Ping Jia, Ryan Bokan, Connor Edel, Rahsean Ellis, Brian P. George, Raja Ghanem, Timothy G. Laske