Patents Assigned to Carl Zeiss Meditec, Inc.
  • Patent number: 11514574
    Abstract: Various methods for the detection and enhanced visualization of a particular structure or pathology of interest in a human eye are discussed in the present disclosure. An example method to visualize a given pathology (e.g., CNV) in an eye includes collecting optical coherence tomography (OCT) image data of the eye from an OCT system. The OCT image data is segmented to identify two or more retinal layer boundaries located in the eye. The two or more retinal layer boundaries are located at different depth locations in the eye. One of the identified layer boundaries is moved and reshaped to optimize visualization of the pathology located between the identified layer boundaries. The optimized visualization is displayed or stored or for a further analysis thereof.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: November 29, 2022
    Assignee: CARL ZEISS MEDITEC, INC.
    Inventors: Homayoun Bagherinia, Luis De Sisternes
  • Patent number: 11499814
    Abstract: An optical coherence tomography (OCT) system (63) is used to inspect bonding points (66A, 66B, 66C) sandwiched between two materials (layers 62, 64 of e.g. displays). The OCT differentiates between a bonding point, e.g. a weld, and air gaps between the two materials. The bonding points are identified as breaks in the air gap between the materials. By extracting various physical characteristics of the bonding points and the gap between the two materials, the present system determines whether the bonding is faulty.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: November 15, 2022
    Assignees: CARL ZEISS AG, CARL ZEISS INDUSTRIAL METROLOGY LLC, CARL ZEISS MEDITEC, INC.
    Inventors: Michael Totzeck, Marcin B. Bauza, Jochen Straub, Muzammil Arain, Matthew J. Everett
  • Patent number: 11488725
    Abstract: A surgery planning system obtains data from a doctor's questionnaire, patients questionnaire, EMR, and biometry unit. The data is weight-mapped to a plurality of electives in a plurality of options (categories). A surgery plan is generated based on the weights of the patients answers, EMR data, and biometry unit data.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: November 1, 2022
    Assignees: CARL ZEISS MEDITEC, INC., CARL ZEISS MEDITEC AG
    Inventors: Jeremiah Robert Elliott, Kyle Hunter Smith
  • Patent number: 11412928
    Abstract: An ophthalmic imaging system has a specialized graphical user interface GUI to convey information for manually adjusting control inputs to bring an eye into alignment with the device. The GUI provides additional information such as laterality, visual alignment overlay aids, and live video feeds. The system further applies automatic gain control to fundus images, synchronizes itself with other ophthalmic systems on a computer network, and provides an optimized image load and display system.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: August 16, 2022
    Assignees: Carl Zeiss Meditec, Inc., Carl Zeiss Meditec AG
    Inventors: Gregory Anderson, Muzammil Arain, Keith Brock, Scott Chang, Matthew J. Everett, Zubir Khan, Archana Kolli, Priya Kulkarni, Benjamin Kwok, Conor Leahy, Gary Lee, Jennifer Luu, Pranav Malvania, David Nolan, Keith O'Hara, Sunny Virmani, Richard Orlowski
  • Patent number: 11395589
    Abstract: Ophthalmic imaging systems, particularly slit-scanning ophthalmo-scopes, are capable of characterizing refraction over the entire field of view of the system. Light from the light source of the system illuminates a region of the eye and the returning light is measured on a detector. The deviation of the location of the returning light from a predetermined location on the detector is measured. The deviation corresponds to the mismatch between the refractions of the imaging system and the eye. The light can be scanned across the full field of view to characterize the entire field. A second illumination source traveling along a second illumination path can be used to improve the characterization. The characterization can be of use for optimizing the focus of the instrument and for assessing the condition of the eye, including assessing myopia and astigmatism in the periphery.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: July 26, 2022
    Assignees: CARL ZEISS MEDITEC, INC., CARL ZEISS MEDITEC AG
    Inventors: Matthew J. Everett, Alexandre R. Tumlinson, David J. Nolan, Conor Leahy, Keith O'Hara
  • Patent number: 11382503
    Abstract: The present invention is an OCT imaging system user interface for efficiently providing relevant image displays to the user. These displays are used during image acquisition to align patients and verify acquisition image quality. During image analysis, these displays indicate positional relationships between displayed data images, automatically display suspicious analysis, automatically display diagnostic data, simultaneously display similar data from multiple visits, improve access to archived data, and provide other improvements for efficient data presentation of relevant information.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: July 12, 2022
    Assignee: CARL ZEISS MEDITEC, INC.
    Inventors: Jochen Straub, Shahram Shawn Dastmalchi
  • Publication number: 20220211268
    Abstract: Systems and methods for Broad Line Fundus Imaging (BLFI), an imaging approach that is a hybrid between confocal and widefield imaging systems, are presented. These systems and methods are focused on improving the quality and signal of broad line fundus images or imaging methods to create high contrast and high resolution fundus images. Embodiments related to improved pupil splitting, artifact removal, reflex minimization, adaptable field of view, instrument alignment and illumination details are considered.
    Type: Application
    Filed: March 4, 2022
    Publication date: July 7, 2022
    Applicant: Carl Zeiss Meditec, Inc.
    Inventors: Daniel BUBLITZ, Matthew J. EVERETT, Csaba FARKAS, Michael KEMPE, Yue QIU, Tobias SCHMITT-MANDERBACH
  • Patent number: 11320253
    Abstract: Various optical systems equipped with diode laser light sources are discussed in the present application. One example system includes a diode laser light source for providing a beam of radiation. The diode laser has a spectral output bandwidth when driven under equilibrium conditions. The system further includes a driver circuit to apply a pulse of drive current to the diode laser. The pulse causes a variation in the output wavelength of the diode laser during the pulse such that the spectral output bandwidth is at least two times larger the spectral output bandwidth under the equilibrium conditions.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: May 3, 2022
    Assignees: CARL ZEISS MEDITEC, INC., CARL ZEISS MEDITEC AG
    Inventors: Alexandre R. Tumlinson, Nathan Shemonski, Yuan Liu
  • Patent number: 11284795
    Abstract: Systems and methods for Broad Line Fundus Imaging (BLFI), an imaging approach that is a hybrid between confocal and widefield imaging systems, are presented. These systems and methods are focused on improving the quality and signal of broad line fundus images or imaging methods to create high contrast and high resolution fundus images. Embodiments related to improved pupil splitting, artifact removal, reflex minimization, adaptable field of view, instrument alignment and illumination details are considered.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: March 29, 2022
    Assignees: Carl Zeiss Meditec, Inc., CARL ZEISS MEDITEC AG
    Inventors: Daniel Bublitz, Matthew J. Everett, Csaba Farkas, Michael Kempe, Yue Qiu, Tobias Schmitt-Manderbach
  • Patent number: 11197605
    Abstract: Improved scanning ophthalmoscopes for scanning the retina of an eye are discussed in the present disclosure. One example scanning ophthalmoscope includes an uncollimated light source, a first scanning element, a second scanning element, a slit of a first aspherical mirror, and a second aspherical mirror. The uncollimated light source produces a beam of light to illuminate the retina. The beam of light is relayed from the first scanning element onto the second scanning element by the slit of the first aspherical mirror. The second aspherical mirror relays the beam of light from the second scanning element to the pupil of the eye.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: December 14, 2021
    Assignee: CARL ZEISS MEDITEC, INC.
    Inventors: Yue Qiu, Matthew Everett, Jochen Straub
  • Patent number: 11153463
    Abstract: A camera capable of quickly updating a region of interest (ROI) in its sensor array is provided. The camera is configured to image individual scan lines of a scan imager created as a scan beam is scanned across a subject. A different ROI is defined for each scan line to be imaged. To achieve this, a table of ROI-defining entries is loaded into the camera prior to imaging the scan lines. The ROI-defining entries are used to update the sensor's ROI during the camera's Frame-Overhead-Time. In this manner, the ROI is changed in between the imaging of consecutive scans lines.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: October 19, 2021
    Assignee: CARL ZEISS MEDITEC, INC.
    Inventors: Michael Doyle, Keith E. O'Hara, Csaba Farkas
  • Patent number: 11058297
    Abstract: An OCT system for generating images of an anterior or posterior segment of an eye is described. The system includes a light source, a controller, optics, a detector, and a processor. The light source generates a beam of light and is capable of operating in a posterior or an anterior segment imaging mode. In the posterior segment imaging mode, light source outputs light with a first spectral bandwidth of less than 120 nm and including wavelengths between about 1060 to 1070 nm. In the anterior segment imaging mode the light source outputs light with a second spectral bandwidth that is larger than 120 nm. The controller enables switching between the posterior or anterior segment imaging mode.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: July 13, 2021
    Assignees: CARL ZEISS MEDITEC, INC., CARL ZEISS MEDITEC AG
    Inventor: Tilman Schmoll
  • Patent number: 11000187
    Abstract: An ophthalmic imaging system provides a user interface to facilitate the montaging of scan images collected with various imaging modalities, such as images collected with a fundus imaging system or an optical coherence tomography (OCT) system. The amount of each constituent image used in the montage is dependent upon its respective quality. During the collecting of scans (constituent images) for montaging, any scan may be designated for rescanning, such as if its current quality is deemed less than sufficient. In the case of using an OCT system to collect constituent images (e.g., cube scans), the scanned region of a constituent image may be modified based on physical characteristics of the eye being scanned.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: May 11, 2021
    Assignee: CARL ZEISS MEDITEC, INC.
    Inventors: Sophie Kubach, Ali Fard, Jennifer Y. Luu, Mary K. Durbin, Matthew J. Everett, Conor Leahy, Luis De Sisternes, Kevin Meng, Gregory G. Anderson, Katherine Makedonsky
  • Patent number: 10952603
    Abstract: Various methods and systems for improved anterior segment optical coherence tomography (OCT) imaging are described. One example method includes collecting a set of OCT data of the cornea of the eye; segmenting the set of OCT data to identify one or more corneal layers; fitting a two-dimensional model of corneal surfaces to the one or more corneal layers; determining motion-correction parameters by minimizing error between the one or more corneal layers and the two-dimensional model of the corneal surfaces; and creating a motion-corrected corneal image dataset from the set of OCT data using the motion-correction parameters. The motion-corrected corneal image dataset can be used to create a model of the anterior and/or posterior surfaces of the cornea. The model of the cornea is used to generate high density and motion-artifact free epithelial thickness maps, which are used for identifying or quantifying pathology such as keratoconus.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: March 23, 2021
    Assignee: CARL ZEISS MEDITEC, INC.
    Inventor: Homayoun Bagherinia
  • Patent number: 10893797
    Abstract: The present invention is an OCT imaging system user interface for efficiently providing relevant image displays to the user. These displays are used during image acquisition to align patients and verify acquisition image quality. During image analysis, these displays indicate positional relationships between displayed data images, automatically display suspicious analysis, automatically display diagnostic data, simultaneously display similar data from multiple visits, improve access to archived data, and provide other improvements for efficient data presentation of relevant information.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: January 19, 2021
    Assignee: Carl Zeiss Meditec, Inc.
    Inventors: Shahram Shawn Dastmalchi, Jochen Straub, Paul F. Stetson
  • Patent number: 10896511
    Abstract: Methods and systems are presented to analyze a retinal image of an eye and assigns features to known anatomical structures such as retinal layers. One example method includes receiving interferometric image data of an eye. A set of features is identified in the image data. A first subset of identified features is associated with known retinal structures using prior knowledge. A first set of characteristic metrics is determined of the first subset of features. A second set of characteristic metrics is determined of a second subset of features. Using the characteristic metrics of the first and the second sets, the second subset of features is associated with the retinal structures. Another example method includes dividing interferometric image data into patches. The image data in each patch is segmented to identify one or more layer boundaries. The segmentation results from each patch are stitched together into a single segmentation dataset.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: January 19, 2021
    Assignee: CARL ZEISS MEDITEC, INC.
    Inventors: Homayoun Bagherinia, Luis De Sisternes
  • Patent number: 10888222
    Abstract: A system and a method for testing a visual field of a subject are described. The method includes determining inter-eye distance of the subject. Visual stimuli are displayed on a left display region and a right display region of a two-dimensional display to the subject based on the determined inter-eye distance. The left display region is configured to display content specific to the left eye and the right display region is configured to display content specific to the right eye of the subject. Subject responses to the visual stimuli are tracked. Based on the subject responses, a condition of the visual field of each eye the subject is evaluated and then results of the evaluation describing the subject's visual field condition is reported or stored.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: January 12, 2021
    Assignees: CARL ZEISS MEDITEC, INC., CARL ZEISS MEDITEC AG
    Inventors: Matthias Monhart, Maximilian Stocker, Robert J. Wood
  • Patent number: 10849498
    Abstract: The present application describes the addition of various feedback mechanisms including visual and audio feedback mechanisms to an ophthalmic diagnostic device to assist a subject to self-align to the device. The device may use the visual and non-visual feedback mechanisms independently or in combination with one another. The device may provide a means for a subject to provide feedback to the device to confirm that an alignment condition has been met. Alternatively, the device may have a means for sensing when acceptable alignment has been achieved. The device may capture diagnostic information during the alignment process or may capture after the alignment condition has been met.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: December 1, 2020
    Assignees: CARL ZEISS MEDITEC, INC., CARL ZEISS MEDITECH AG
    Inventors: Alexandre R. Tumlinson, Keith O'Hara, Angelo Rago
  • Patent number: 10832402
    Abstract: Various methods for the detection and enhanced visualization of a particular structure or pathology of interest in a human eye are discussed in the present disclosure. An example method to visualize a given pathology (e.g., CNV) in an eye includes collecting optical coherence tomography (OCT) image data of the eye from an OCT system. The OCT image data is segmented to identify two or more retinal layer boundaries located in the eye. The two or more retinal layer boundaries are located at different depth locations in the eye. One of the identified layer boundaries is moved and reshaped to optimize visualization of the pathology located between the identified layer boundaries. The optimized visualization is displayed or stored or for a further analysis thereof.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: November 10, 2020
    Assignee: CARL ZEISS MEDITEC, INC.
    Inventors: Homayoun Bagherinia, Luis De Sisternes
  • Patent number: 10809050
    Abstract: Various optical systems equipped with diode laser light sources are discussed in the present application. One example system includes a diode laser light source for providing a beam of radiation. The diode laser has a spectral output bandwidth when driven under equilibrium conditions. The system further includes a driver circuit to apply a pulse of drive current to the diode laser. The pulse causes a variation in the output wavelength of the diode laser during the pulse such that the spectral output bandwidth is at least two times larger the spectral output bandwidth under the equilibrium conditions.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: October 20, 2020
    Assignees: CARL ZEISS MEDITEC, INC., CARL ZEISS MEDITEC AG
    Inventors: Alexandre R. Tumlinson, Nathan Shemonski, Yuan Liu