Abstract: A chuck for testing an integrated circuit includes an upper conductive layer having a lower surface and an upper surface suitable to support a device under test. An upper insulating layer has an upper surface at least in partial face-to-face contact with the lower surface of the upper conductive layer, and a lower surface. A middle conductive layer has an upper surface at least in partial face-to-face contact with the lower surface of the upper insulating layer, and a lower surface.
Type:
Grant
Filed:
April 11, 2011
Date of Patent:
November 29, 2016
Assignee:
Cascade Microtech, Inc.
Inventors:
Michael E. Simmons, Kazuki Negishi, Roy Jensen, Ryan Garrison, Philip Wolf
Abstract: The invention relates to method for rendering sustainable the electromagnetic characteristics of optically active composite materials, said method comprising: a first step of preparing doped organic compounds by mixing at least one type of optically active molecules with a protective material in order to prevent the contact thereof with photodegradation-inducing elements and the migration of the optically active molecules; a second step of producing optically active nanoparticles including said doped organic compounds; and a third step of producing optically active composite materials by incorporating the optically active nanoparticles into a polymer matrix.
Type:
Application
Filed:
January 13, 2015
Publication date:
November 17, 2016
Applicants:
LRPL (LABORATOIRE DE PHYSIQUE DU RAYONNEMENT ET DE LA LUMIÈRE), CASCADE
Abstract: Systems and methods for testing a device under test (DUT) that includes a low power output driver. The methods include providing an input signal to the DUT. The low power output driver is configured to generate a data signal responsive to receipt of the input signal by the DUT and provide the data signal to a signal analyzer via a data signal transmission line. The methods further include determining an expected data signal to be received from the low power output driver and charging at least a portion of the data signal transmission line with a co-drive output signal that is based, at least in part, on the expected data signal. The methods further include receiving a composite data signal with the signal analyzer. The systems include probe heads with a plurality of data signal transmission lines and a plurality of co-drive conductors.
Abstract: An electrolyzed water processor chamber with an anodic chamber having an anode plate held in an anode tray, and a cathodic chamber having a cathode plate held within a cathode tray. The plates are charged by an electrical current, to separate an incoming water stream into its electromagnetically ionized alkaline and acidic components, across an ion exchange membrane sandwiched between the anode and cathode plate trays. The trays can include sets of ducts and cavities, so that when the trays are stacked together, with the cavities aligning to form plenums for the routing of water between the trays. The trays stack as modular units, so that any multiple of the anodic and cathodic tray pairs, with their plates and sandwiched membrane, can be stacked together and function as a combined processor chamber, with end caps mounted on the top-most and bottom-most plate trays.
Abstract: Focusing optical systems and methods for testing semiconductors are disclosed herein. The methods include receiving an image of a probe through a single optical path of a microscope, substantially focusing the microscope on the probe, and determining a vertical height adjustment between the probe and a device under test based upon the focusing.
Abstract: The contacts of a probing apparatus are elastically supported on a replaceable coupon and electrically interconnected with conductors on a membrane or a space transformer.
Abstract: This document provides methods and materials for detecting target nucleic acid. For example, methods and materials for detecting the presence or absence of target nucleic acid, methods and materials for detecting the amount of target nucleic acid present within a sample, kits for detecting the presence or absence of target nucleic acid, kits for detecting the amount of target nucleic acid present within a sample, and methods for making such kits are provided.
Type:
Grant
Filed:
August 31, 2015
Date of Patent:
August 30, 2016
Assignee:
Cascade Biosystems, Inc.
Inventors:
Kenneth D. Smith, Nina Yazvenko, Mariya Smit
Abstract: This document provides methods and materials for detecting contaminated food products. For example, methods and materials for using an enzymatic amplification cascade of restriction endonucleases to detect nucleic acid of a microorganism or virus (e.g., a pathogen) within a sample (e.g., food product sample) being tested, thereby assessing a food product for possible contamination are provided.
Type:
Grant
Filed:
August 31, 2015
Date of Patent:
July 26, 2016
Assignee:
Cascade Biosystems, Inc.
Inventors:
Kenneth D. Smith, Nina Yazvenko, Mariya Smit
Abstract: In a method and a device for testing a test substrate under defined thermal conditions, a substrate that is to be tested is held by a temperature-controllable chuck and is set to a defined temperature; the test substrate is positioned relative to test probes by at least one positioning device; and the test probes make contact with the test substrate for testing purposes. At least one component of the positioning device that is present in the vicinity of the temperature-controlled test substrate is set to a temperature that is independent of the temperature of the test substrate by a temperature-controlling device, and this temperature is held constant.
Type:
Grant
Filed:
July 29, 2013
Date of Patent:
July 19, 2016
Assignee:
CASCADE MICROTECH, INC.
Inventors:
Joerg Kiesewetter, Stojan Kanev, Michael Teich, Karsten Stoll, Axel Schmidt
Abstract: Disclosed systems and methods for testing a device under test (DUT) with a probe system are selected to test a DUT at a temperature below the dew point of the ambient environment surrounding the probe system. Probe systems include a measurement chamber configured to isolate a cool, dry testing environment and a measurement chamber door configured to selectively isolate the internal volume of the measurement chamber. When a DUT, that is or is included on a substrate, is tested at a low temperature, systems and methods are selected to heat the substrate in a dry environment, at least partially isolated from the measurement chamber, to at least a temperature above the dew point and/or the frost point of the ambient environment.
Abstract: High frequency interconnect structures, electronic assemblies that utilize high frequency interconnect structures, and methods of operating the same. The high frequency interconnect structures include a plurality of dielectric waveguides and are configured to communicatively connect a plurality of transmitters with a plurality of receivers and to convey a plurality of signals therebetween. The plurality of signals may include a plurality of electromagnetic waves and may have a frequency of at least 200 GHz. The high frequency interconnect structures further may be configured to decrease a potential for crosstalk between a first signal that is conveyed by a first dielectric waveguide of the plurality of dielectric waveguides and a second signal that is conveyed by a second dielectric waveguide of the plurality of dielectric waveguides, such as through control of a passband of the first dielectric waveguide relative to the second dielectric waveguide and/or the use of a crosstalk mitigation structure.
Type:
Grant
Filed:
May 31, 2012
Date of Patent:
June 21, 2016
Assignee:
Cascade Microtech, Inc.
Inventors:
Eric W. Strid, Richard L. Campbell, Kenneth R. Smith, K. Reed Gleason, Kooho Jung
Abstract: Systems and methods for providing wafer access in a wafer processing system are disclosed herein. The methods may include docking a first wafer cassette on the wafer processing system and removing a selected wafer from the first wafer cassette with the wafer processing system. The methods further may include performing a process operation on the selected wafer with the wafer processing system and undocking the first wafer cassette from the wafer processing system while performing the process operation. The methods also may include docking a second wafer cassette (which may be the same as or different from the first wafer cassette) on the wafer processing system, inventorying the second wafer cassette with the wafer processing system, and/or subsequently placing the selected wafer in the second wafer cassette. The systems may include wafer processing systems that include a controller that is programmed to perform at least a portion of the methods.
Type:
Grant
Filed:
December 27, 2013
Date of Patent:
June 21, 2016
Assignee:
Cascade Microtech, Inc.
Inventors:
Frank Fehrmann, Botho Hirschfeld, Stojan Kanev
Abstract: A load-bearing assembly including a clamping-force sensor in a pivoting support assembly that is adjustable to vary a radial spacing between a pivot pin and a clamp pad supported on the support assembly. A plurality of clamping-force sensors may be included in a plurality of pivoting clamp pad support assemblies to support a clamp pad and may be arranged to sense the magnitude of a clamping force exerted by a particular adjustable pivoting clamp pad support assembly and send signals indicative of the magnitude of the force to a controller. Force values sensed and transmitted to the controller may be used to evaluate and adjust the clamp arm assembly to grasp a load with a desired clamping force or distribution of clamping forces.
Abstract: A load-bearing assembly including a clamping-force sensor in a pivoting support assembly that is adjustable to vary a radial spacing between a pivot pin and a clamp pad mounted on the support assembly. A plurality of clamping-force sensors may be included in a plurality of pivoting clamp pad support assemblies to support a clamp pad and may be arranged to sense the magnitude of a clamping force exerted by a particular adjustable pivoting clamp pad support assembly and send signals indicative of the magnitude of the force to a controller. A load sensor may be located between a pivot pin and a bearing block, or strain gauges may be mounted in the pivoting bearing block so as to measure forces carried through the bearing block. Force values sensed and transmitted to the controller may be used to evaluate and adjust the clamp arm assembly to grasp a load with a desired clamping force or distribution of clamping forces.
Abstract: A gripping arm for a clamping attachment for a forklift has a load engaging inner arm including portions defining a load face. The inner arm is pivotal about a first axis parallel to the load face and pivots about a second axis normal to the first axis to engage and secure a load.
Abstract: An exceptionally thin load-weighing fork assembly, having its weight sensors mounted on a fork base, overcomes fork-insertion limitations with respect to commonly used standard pallets without sacrificing load-handling capacity.
Type:
Grant
Filed:
August 13, 2014
Date of Patent:
April 19, 2016
Assignee:
Cascade Corporation
Inventors:
Lawrence E. Richards, Brian D. Campbell, Brian Sinclair White
Abstract: A lift truck clamp arm assembly for engaging large cartons, which may contain large household appliances. Pivoting clamp pad support assemblies are adjustable to vary a radial spacing between a pivot pin and a clamp pad supported on the clamp arm assembly by attachment to the adjustable clamp pad support assembly, to provide desired pressure concentrations at selected parts of a carton to be gripped.